Skip to main content

Advertisement

Log in

Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm3+

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report on 2.0-μm emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+ upon excitation of a conventional 808 nm laser diode. The Judd-Ofelt strength parameters, spontaneous radiative transition probabilities and radiative lifetime of Ho3+ have been calculated from the absorption spectra by using the Judd-Ofelt theory. Significant enhancement of 2.0-μm emission of Ho3+ has been observed with increasing Tm3+ doping up to 0.7 mol%. The energy transfer coefficient of the forward Tm3+→Ho3+ is approximately 17 times larger than that of the backward Tm3+←Ho3+ energy transfer. Our result indicates that the maximum gain of 2.0-μm emission, assigned to the transition of 5I75I8 of Ho3+, might be achieved from the tellurite glass at the concentration of 0.5 mol% of Tm2O3 and 0.15 mol% of Ho2O3. The high gain coefficient and quantum efficiency (1.16) along with the large value of the product of the stimulated emission cross-section and the measured radiative lifetime (4.12×10−27 m2s) of the Ho3+/Tm3+-codoped tellurite glasses might find potential applications in efficient 2.0-μm laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Zou X, Toratani H (1996) Spectroscopic properties and energy transfer in singly-and Tm3+/Ho3+ doubly-doped glasses. J Non-Cryst Solids 195:113–124

    Article  CAS  Google Scholar 

  2. Peng B, Izumitani T (1995) Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+/Ho3+ doped near-infrared laser gasses, sensitized by Yb3+. Opt Mater 4:797–810

    Article  CAS  Google Scholar 

  3. Shin YB, Lim HT, Choi YG, Kim YS, Heo J (2000) 2.0 μm emission properties and energy transfer between Ho3 + and Tm3 + in PbO-Bi2O3-Ga2O3 glasses. J Am Ceram Soc 83(4):787–791

    Article  CAS  Google Scholar 

  4. Richards BDO, Shen SX, Jha A (2005) Spectroscopy of Tm-Ho co-doped tellurite glass for mid-IR fibre lasers in 1.8–2.2 μm. Proc SPIE 5984(7):1–8

    Google Scholar 

  5. Courrol LC, Tarelho LVG, Gomes L, Vieira ND, Cassanjes FC, Messaddeq Y, Ribeiro SJL (2001) Time dependence and energy-transfer mechanisms in Tm3+, Ho3+ and Tm3+/Ho3+ co-doped alkli niobi μm tellurite glasses sensitized by Yb3+. J Non-Cryst Solids 284:217–222

    Article  CAS  Google Scholar 

  6. Kim YS, Cho WY, Shin YB, Heo J (1996) Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+. J Non-Cryst Solids 203:176–181

    Article  CAS  Google Scholar 

  7. Johson LJ, Boyd GD, Nassau K (1962) Optical maser characteristics of Ho3 + in CaWO4. Proc IAE 50:87–90

    Google Scholar 

  8. Zhang XL, Wang YZ, Ju YL (2007) Theoretical and experimental study of a single frequency Tm, Ho: YLF Laser. Opt Laser Tech 39(4):782–785

    Article  CAS  Google Scholar 

  9. Tsuboi T, Murayama H (2006) Energy-transfer upconversion of rare earth ions in ionic crystals: Case of Tm3+/Ho3+-codoped LiYF4 crystals. J Alloys Compd 408–412:680–686

    Article  CAS  Google Scholar 

  10. Földvári I, Baraldi A, Capelletti R, Magnani N, Sosa RF, Munoz AF, Kappers LA, Watterich A (2007) Optical absorption and luminescence of Ho3+ ions in Bi2TeO5 single crystal. Opt Mater 29(6):688–696

    Article  CAS  Google Scholar 

  11. Rai SB, Singh AK, Singh SK (2003) Spectroscopic properties of Ho3+ ion doped in tellurite glass. Spectrochimi Acta A 59:3221–3226

    Article  CAS  Google Scholar 

  12. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761

    Article  CAS  Google Scholar 

  13. Ofelt GS (1962) Intensities of crystal spectra and decay of Er3+ fluorescence in LaF3. J Chem Phys 37:511–520

    Article  CAS  Google Scholar 

  14. Rukmini E, Jayasankar CK (1995) Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses. Opt Mater 4:529–546

    Article  CAS  Google Scholar 

  15. Shin YB, Jang JN, Heo J (1995) Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses. Opt Quant Elect 27:379–386

    Article  CAS  Google Scholar 

  16. Reisfield R, Hormadaly R (1976) Optical intensities of holmiμm in tellurite, calibo, and phosphate glasses. J Chem Phys 64:3207–3212

    Article  Google Scholar 

  17. Singh AK, Rai SB, Singh VB (2005) Up-conversion in Ho3+ doped tellurite glass. J Alloys Compd 403:97–103

    Article  CAS  Google Scholar 

  18. Song JH, Heo J, Park SH (2003) Emission properties of PbO-Bi2O3-Ga2O3 –GeO2 glasses doped with Tm3+ and Ho3+. J Appl Phys 93:9441–9445

    Article  CAS  Google Scholar 

  19. Lee TH, Heo J (2005) 1.6 μm emission and gain properties of Ho3 + in selenide and chalcohalide glasses. J Appl Phys 98:113510

    Article  CAS  Google Scholar 

  20. Zhang QY, Li T, Jiang ZH (2005) 980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses. Appl Phys Lett 87:171911; Zhang QY, Li T (2006) Effects of PbF2 doping on structure and spectroscopic properties of Ga2O3–GeO2–Bi2O3–PbO glasses doped with rare earths. J Appl Phys 90:033510

    Article  CAS  Google Scholar 

  21. Vila LD, Gomes L, Eyzaguirre CR, Rodriguez E, Cesar CL, Barbosa LC (2005) Time resoled luminescence in (Tm:Ho) doped tellurite glass. Opt Mater 27:1333–1339

    Article  CAS  Google Scholar 

  22. Spector N, Reisfield R, Boehm L (1977) Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses. Chem Phys Lett 49:49–53

    Article  CAS  Google Scholar 

  23. ÖZen G, Aydinli A, Cenk S, Sennaroğlu A (2003) Effect of compositon on spontaneous emission probabilities, stimulated emission cross-sections and local environmental of Tm3+ in TeO2-WO3 glass. J Lumin 101:293–306

    Article  CAS  Google Scholar 

  24. Press WH, Hu JW, Zhao ZY, Xue YH (2005) Numerical recipes in C++: the art of scientific computing. Publishing House of Electronics Industry, Beijing

    Google Scholar 

  25. Volkov EA (1989) Numerical methods. Hemisphere Pub Corp., New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. ZM Feng for technical assistance. This work is jointly supported by NSFC (50472053), NCET (04-0823) and GSTD (2006J1-C0491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G.X., Zhang, Q.Y., Yang, G.F. et al. Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm3+ . J Fluoresc 17, 301–307 (2007). https://doi.org/10.1007/s10895-007-0173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0173-5

Keywords

Navigation