Skip to main content

Advertisement

Log in

Fluorescence Imaging of Heat-Stress Induced Mitochondrial Long-Term Depolarization in Breast Cancer Cells

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Various thermotherapies are based on the induction of lethal heat in target tissues. Spatial and temporal instabilities of elevated temperatures induced in therapy targets require optimized treatment protocols and reliable temperature control methods during thermotherapies. Heat-stress induced effects on mitochondrial transmembrane potentials were analyzed in breast cancer cells, species MX1, using the potential sensor JC-1 (Molecular Probes, Invitrogen, Germany). Potential dependant labeling of heat-stressed cells was imaged and evaluated by fluorescence microscopy and compared with control cells. JC-1 stains mitochondria in cells with high mitochondrial potentials by forming orange-red fluorescent J-aggregates while in cells with depolarized or damaged mitochondria the sensor dye exists as green fluorescent monomers. In MX1 cells orange-red and green fluorescence intensities were correlated with each other after various heat-stress treatments and states of mitochondrial membrane potentials were deduced from the image data. With increasing stress temperatures the intensity of red fluorescent J-aggregates decreased while the green fluorescence intensity of JC-1 monomers increased. This heat-stress response happened in a nonlinear manner with increasing temperatures resulting in a nonlinear increase of red/green fluorescence ratios. These data indicated that mitochondria in MX1 cells were increasingly depolarized in response to increasing ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lindquist S (1986) The heat-shock response. Ann Rev Biochem. 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  2. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92(4):1725–1742

    PubMed  CAS  Google Scholar 

  3. Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22(56):9041–9047

    Article  PubMed  CAS  Google Scholar 

  4. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    PubMed  CAS  Google Scholar 

  5. Gewiese B, Beuthan J, Fobbe F, Stiller D, Mueller G, Boese-Landgraf J, Wolf, K-J, Deimling M (1994) Magnetic resonance imaging-controlled laser-induced interstitial thermotherapy. Investig Radiol 29(3):345–351

    Article  CAS  Google Scholar 

  6. Roggan A, Ritz J-P, Knappe V, Germer C- T, Isbert C, Schaedel D, Mueller G (2001) Radiation planning for thermal laser treatment. Med Laser Appl 16(2):65–72

    Article  Google Scholar 

  7. Nikfarjam M, Christophi C (2003) Interstitial laser thermotherapy for liver tumours. Brit J Surg 90(9):1033–1047

    Article  PubMed  CAS  Google Scholar 

  8. Van Der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184

    CAS  Google Scholar 

  9. Debes A, Willers R, Goebel U, Wessalowski R (2004) Role of treatment in childhood cancers: Distinct resistance profiles of solid tumor cell lines towards combined thermochemotherapy. Pediatr Blood Cancer 45(5):663–669

    Article  Google Scholar 

  10. Hehr T, Wust P, Bamberg M, Budach W (2003) Current potential role of thermoradiotherapy for solid tumors. Onkologie 26(3):295–302

    Article  PubMed  CAS  Google Scholar 

  11. Colombo R, Salonia A, Da Pozzo LF, Naspro R, Freschi M, Paroni R, Pavone Malasco M, Rigatti P (2003) Combination of intravesical chemotherapy and hyperthermia for the treatment of superficial bladder cancer: preliminary clinical experience. Crit Rev Oncol/Hematol 47(2):127–139

    Article  CAS  Google Scholar 

  12. Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system fort he treatment of human solid tumors with magnetic fluid hyperthermia. J Magnetism Magn Mat 235:118–126

    Article  Google Scholar 

  13. Johannsen M, Thiesen B, Gneveckow U, Taymoorian K, Waldoefner N, Scholz R, Deger S, Jung K, Loening S, Jordan A (2005) Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate 66(1):97–104

    Article  CAS  Google Scholar 

  14. Gellermann J, Wlodarczyk W, Hildebrandt B, Ganter H, Nicolau A, Rau B, Tilly W, Faehling H, Nadobny J, Felix R, Wust P (2005) Noninvasive magnetic resonance thermotherapy of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res 65(13):5872–5880

    Article  PubMed  CAS  Google Scholar 

  15. Mack M, Straub R, Eichler K, Söllner O, Lehnert T, Vogl T (2004) Breast cancer metastasis in liver: laser-induced interstitial thermotherapy-local tumor control rate and survival data. Radiol 233(2):400–409

    Google Scholar 

  16. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19(3):267–294

    Article  PubMed  CAS  Google Scholar 

  17. Park HG, Han SI, Oh SY, Kang HS (2005) Cellular responses to mild heat stress. Cell Mol Life Sci 62(1):10–23

    Article  PubMed  CAS  Google Scholar 

  18. Funk KRHW, Nagel F, Wanka F, Krinke, HE, Gölfert F, Hofer A (1999) Effects of heat shock on the functional morphology of cell organelles observed by video-enhanced microscopy. Anat Rec 255(4):458–464

    Article  PubMed  CAS  Google Scholar 

  19. Huckriede A, Heikema A, Sjollema K, Briones P, Agsteribbe E (1995) Morphology of the mitochondria in heat shock protein 60 deficient fibroblasts from mitochondrial myopathy patients. Effects of stress conditions. Virchows Arch 427(2):159–165

    Article  PubMed  CAS  Google Scholar 

  20. Lai YK, Lee WC, Hu CH, Hammond GL (1996) The mitochondria are recognition organelles of cell stress. J Surg Res 62(1):90–94

    Article  PubMed  CAS  Google Scholar 

  21. Macouillard-Poulletier de Gannes F, Leducq N, Diolez P, Belloc F, Merle M, Canioni P, Voison P-J (2000) Mitochondrial impairment and recovery after heat shock treatment in a human microglial cell line. Neurochem Intl 36(3):233–241

    Article  Google Scholar 

  22. Macouillard-Poulletier de Gannes F, Merle M, Canioni P, Voison P-J (1998) Metabolic and cellular characterization of immortalized microglial cells under heat stress. Neurochem Intl 33(1):61–73

    Article  Google Scholar 

  23. Waggoner AS (1979) Dye indicators of membrane potential. Annu Rev Biophys Bioenerg 8:47–68

    Article  CAS  Google Scholar 

  24. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Francheschi C (1993) A new method for the cytofluorimetric analysismof mitochondrial membrane potentialusing the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl- benzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197(1):40–45

    Google Scholar 

  25. http://probes.invitrogen.com/servlets/spectra?fileid=3168p82

  26. http://probes.invitrogen.com/media/publications/159.pdf

  27. Keshavan P, Schwemberger SJ, Smith DLH, Babcock FG, Zucker SD (2004) Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. Int J Cancer 112(2):433–445

    Article  PubMed  CAS  Google Scholar 

  28. Zunino SJ, Storms DH (2005) Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett XX:1–12

    Google Scholar 

  29. Lieven CJ, Vrabec JP, Levin LA (2003) The effects of oxidative stress on mitochondrial transmembrane potential in retinal ganglion cells. Antioxidants & Redox Signaling 5(5):641–646

    Article  CAS  Google Scholar 

  30. Wang J-L, Ke D-S, Lin M-T (2005) Heat shock pretreatment may protect against heatstroke-induced circulatory shock and cerebral ischemia by reducing oxidative stress and energy depletion. Shock 23(2):161–167

    Article  PubMed  CAS  Google Scholar 

  31. Dressler C, Minet O, Novkov V, Mueller G, Beuthan J (2005) Microscopical heat stress investigations under application of quantum dots. J Biomed Optics 10:1–9

    Google Scholar 

  32. Beuthan J, Dressler C, Minet O (2004) Laser induced fluorescence detection of quantum dots redistributed in thermally stressed tumor cells. Laser Phys 14(2):213–19

    CAS  Google Scholar 

  33. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  PubMed  CAS  Google Scholar 

  34. Kim J-S, He L, Lemasters JL (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304(3):463–470

    Article  PubMed  CAS  Google Scholar 

  35. Bernardi P, Scorrano L, Colonna R, Petronelli V, Di Lisa F (1999) Mitochondria and cell death. Eur J Biochem 264:687–701

    Article  PubMed  CAS  Google Scholar 

  36. O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV, Jr (2003) Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 85:3350–3357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrin Dressler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dressler, C., Beuthan, J., Mueller, G. et al. Fluorescence Imaging of Heat-Stress Induced Mitochondrial Long-Term Depolarization in Breast Cancer Cells. J Fluoresc 16, 689–695 (2006). https://doi.org/10.1007/s10895-006-0110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0110-z

Keywords

Navigation