Skip to main content
Log in

Use of Induced Circularly Polarized Luminescence (CPL) from Racemic D3 Lanthanide Complexes to Determine the Absolute Configuration of Amino Acids

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The perturbation of the racemic equilibrium of luminescent D3 lanthanide(III) complexes by added chiral agents, such as amino acids, may be a useful technique for determining the absolute configuration of the added species. It is shown in this work, however, that simple interpretation of the equilibrium shift of racemic tris-terdentate complexes of Tb(III) with 2,6-pyridine-dicarboxylate by amino acids, as measured by the sign of the resultant circularly polarized luminescence (CPL) in terms of specific structural characteristics is not possible. CPL results for a number of derivatized amino acids are also presented, and some insights into the nature of the chiral discriminatory forces that might be exploited in this kind of study are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Brittain (1991). Circularly polarized luminescence studies of chiral lanthanides complexes. Pract. Spectrosc. 12, 179–200.

    Google Scholar 

  2. H. G. Brittain (1989). Circularly polarized luminescence studies of chiral lanthanide complexes. J. Coord. Chem. 20(4), 331–347.

    Google Scholar 

  3. P. A. Brayshaw, J.-C. G. Bünzli, P. Froidevaux, J. M. Harrowfield, Y. Kim, and A. N. Sobolev (1995). Synthetic, structural, and spectroscopic studies on solids containing tris(dipicolinato) rare earth anions and transition or main group metal cations. Inorg. Chem. 34, 2068–2076.

    Article  Google Scholar 

  4. I. Grenthe (1961). Stability relationship among the rare earth dipicolinates. J. Am. Chem. Soc. 83, 360–364.

    Article  Google Scholar 

  5. M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J.-C. Rodriguez-Ubis, and J. Kankare (1997). Correlation between the lowest triplet state energy level of the ligand and Lanthanide(III) luminescence quantum yield. J. Luminesc. 75(2), 149–169.

    Google Scholar 

  6. P. Pfeiffer and Y. Nakatsuka (1933). The activation of complex salts in aqueous solution III. Chem. Ber. 66B, 415–418.

    Google Scholar 

  7. P. Pfeiffer and K. Quehl (1932). Activation of complex salts in aqueous solution. Chem. Ber. 65, 560–565.

    Google Scholar 

  8. P. Pfeiffer and K. Quehl (1931). A new effect in solutions of optically active substances. Chem. Ber. 64, 2667–2671.

    Google Scholar 

  9. J. P. Riehl and G. Muller (2005). In K. A. Gschneidner Jr., J.-C. G. Bünzli, and V. K. Pecharsky (Ed.), Handbook on the Physics and Chemistry of Rare Earths, North-Holland Publishing Company, Amsterdam, Vol. 34, Chapter 220, pp. 289–357.

    Google Scholar 

  10. E. Huskowska and J. P. Riehl (1995). Perturbation of the racemic equilibrium between D3 lanthanide complexes through the addition of sugars. Inorg. Chem. 34, 5615–5621.

    Article  Google Scholar 

  11. G. L. Hilmes and J. P. Riehl (1986). Circularly polarized luminescence from racemic lanthanide(III) complexes with achiral ligands in aqueous solution using circularly polarized excitation. Inorg. Chem. 25, 2617–2622.

    Article  Google Scholar 

  12. G. L. Hilmes, J. M. Timper, and J. P. Riehl (1985). Circularly polarized luminescence from racemic terbium complexes excited with circularly polarized incident light. Inorg. Chem. 24, 1721–1723.

    Article  Google Scholar 

  13. C. L. Maupin and J. P. Riehl (2000). In J. C. Lindon, G. E. Trantner, and J. L. Holmes (Ed.), Encyclopedia of Spectroscopy and Spectrometry, Academic Press, New York, pp. 319–326.

    Google Scholar 

  14. N. Çoruh, G. L. Hilmes, and J. P. Riehl (1988). Use of the Pfeiffer Effect to probe the optical activity of europium(III) complexes with 2, 6-pyridinedicarboxylate. Inorg. Chem. 27, 3647–3651.

    Article  Google Scholar 

  15. G. L. Hilmes, N. Çoruh, and J. P. Riehl (1988). Quantitative aspects of Pfeiffer effect optical activity in aqueous dysprosium(III) complexes with 2, 6-pyridinedicarboxalic acid. Inorg. Chem. 27, 1136–1139.

    Article  Google Scholar 

  16. F. Yan, R. A. Copeland, and H. G. Brittain (1982). Optical activity induced in the terbium(III) and europium(III) tris complexes of pyridine-2, 6-dicarboxylate through association with monoamino and diamino acids. Inorg. Chem. 21, 1180–1180.

    Article  Google Scholar 

  17. H. G. Brittain (1981). Optical activity induced in terbium(III) tris(pyridine-2, 6-dicarboxylate) through association with certain chiral amino acids. Inorg. Chem. 20, 3007–3013.

    Article  Google Scholar 

  18. H. G. Brittain (1984). Studies of the Pfeiffer effect induced in tris(pyridine-2,6-dicarboxylato)terbate(III) by monosaccharide aldose sugars. J. Chem. Soc. Dalton Trans. 7, 1367–1370.

    Article  Google Scholar 

  19. S. Wu, G. L. Hilmes, and J. P. Riehl (1989). Nature of chiral-induced equilibrium shifts in racemic labile lanthanide complexes. J. Phys. Chem. 93, 2307–2310.

    Article  Google Scholar 

  20. P. E. Schipper (1978). Induced equilibrium shifts in labile racemates. The nature of the discriminatory interactions in the Pfeiffer effect. J. Am. Chem. Soc. 100, 1079–1084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Riehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, G., Riehl, J.P. Use of Induced Circularly Polarized Luminescence (CPL) from Racemic D3 Lanthanide Complexes to Determine the Absolute Configuration of Amino Acids. J Fluoresc 15, 553–558 (2005). https://doi.org/10.1007/s10895-005-2828-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2828-4

Keywords

Navigation