Skip to main content
Log in

New Advances in Plasma Technology for Textile

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Plasma processing technologies are of vital importance to several of the largest manufacturing industries in the world. Foremost among these industries is the electronics industry, in which plasma-based processes are indispensable for the manufacture of very large-scale integrated microelectronic circuits. Plasma processing of materials is also a critical technology in, for example, the aerospace, automotive, steel, biomedical, and toxic waste management industries. Most recently, plasma processing technology has been utilized increasingly in the emerging technologies of diamond film and superconducting film growth. The dominant role of plasma-treated surfaces in key industrial sectors, such as microelectronics, is well known, and plasmas, certainly experimentally and, in places, industrially, are being used to modify a huge range of material surfaces, including plastics, polymers and resins, paper and board, metals, ceramics and in organics, and biomaterials. In the textile field, significant research work has been going on since the early 1980s in many laboratories across the world dealing with low temperature plasma treatments of a variety of fibrous materials showing very promising results regarding the improvements in various functional properties in plasma-treated textiles. The growing environmental and energy-saving concerns will also lead to the gradual replacement of many traditional wet chemistry-based textile processing, using large amounts of water, energy and effluents, by various forms of low-liquor and dry-finishing processes. Plasma technology, when developed at a commercially viable level, has strong potential to offer in an attractive way achievement of new functionalities in textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to plasmas, with particular emphasis on their potential use in the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wei, Y. Wang, Q. Yang, Y. Liangyan, Functionalization of textile materials by plasma enhanced modification. J. Ind. Text. 36, 301 (2007)

    Article  Google Scholar 

  2. S. Pane, R. Tedesco, R. Greger, Acrylic fabrics treated with plasma for outdoor applications. J. Ind. Text. 31(2), 135 (2001)

    Article  Google Scholar 

  3. W.M. Raslan, E.M. El-khatib, A.A. El-halwagy, Low temperature plasma/metal salts treatments for improving some properties of polyamide 6 fibers. J. Ind. Text. 40, 246–260 (2011)

    Article  Google Scholar 

  4. E. Sinha, S. Panigrahi, Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 4317, 1791–1802 (2009)

    Article  Google Scholar 

  5. Q. Wei, Y. Wang, Q. Yang, L. Yu, Functionalization of textile materials by plasma enhanced modification. J. Ind. Text. 36(4), 301–309 (2007)

    Article  Google Scholar 

  6. A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Gas discharge plasmas and their applications. Spectrochim. Acta Part B 57, 609–658 (2002)

    Article  ADS  Google Scholar 

  7. H.S. Lee, S.Y. Yeo, S.H. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 38(10), 2199–2204 (2003)

    Article  ADS  Google Scholar 

  8. E.M. Aizenshtein, International exhibition of technical textiles and nonwovens in Frankfurt. Fibre Chem. 43(5), 388–394 (2011)

    Article  Google Scholar 

  9. R. Shishoo, Plasma Technologies for Textiles. Woodhead Publishing Limited and CRC Press LLC. ISBN-13: 978-1-84569-073-1, England (2007)

  10. N.V. Bhat, A.N. Netravali, A.V. Gore, M.P. Sathianarayanan, G.A. Arolkar, R.R. Deshmukh, Surface modification of cotton fabrics using plasma technology. Text. Res. J. 81, 1014 (2011)

    Article  Google Scholar 

  11. R. Morent, N. De Geyter, C. Leys, L. Gengembre, E. Payen, Surface modification of non-woven textiles using a dielectric barrier discharge operating in air, helium and argon at medium pressure. Text. Res. J. 77, 471 (2007)

    Article  Google Scholar 

  12. J. Verschuren, P. Kiekens, C. Leys, Textile-specific properties that influence plasma treatment, effect creation and effect characterization. Text. Res. J. 77, 727 (2007)

    Article  Google Scholar 

  13. L. Guo, C. Campagne, A. Perwuelz, F. Leroux, Zeta potential and surface physico-chemical properties of atmospheric air-plasma-treated polyester fabrics. Text. Res. J. 79, 1371 (2009)

    Article  Google Scholar 

  14. S. Shahidi, Plasma treatment of textile fabrics. 18.11.2009, Thesis, Technical University of Liberec (2009)

  15. M. Gorjanc, V. Bukosek, M. Gorensek, M. Mozetic, CF4 plasma and silver functionalized cotton. Text. Res. J. 80, 2204 (2010)

    Article  Google Scholar 

  16. E. Sinha, S. Panigrahi, Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J. Comp. Mater. 43, 1791 (2009)

    Article  Google Scholar 

  17. S.K. Chinta, S.M. Landage, M. Sathish Kumar, Plasma technology and its application in textile wet processing. Int. J. Eng. Res. Technol. (IJERT) 1(5), 1–12 (2012)

    Google Scholar 

  18. S. Shahidi, M. Ghoranneviss, B. Moazzenchi, A. Rashidi, M. Mirjalili, Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field. Plasma Process. Polym. 4, S1098–S1103 (2007)

    Article  Google Scholar 

  19. S. Shahidi, A. Rashidi, M. Ghoranneviss, A. Anvari, M.K. Rahimi, M. Bameni, Moghaddam. J. Wiener, Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma, Cellulose 17, 627–634 (2010)

    Google Scholar 

  20. S. Shahidi, M. Ghoranneviss, Comparison between oxygen and nitrogen plasma treatment on adhesion properties and antibacterial activity of metal coated polypropylene fabrics. Fibers Polym. 13(8), 971–978 (2012)

    Article  Google Scholar 

  21. M. Ghoranneviss, B. Moazzenchi, S. Shahidi, A. Anvari, A. Rashidi, Decolorization of denim fabrics with cold, plasmas in the presence of magnetic fields. Plasma Process. Polym. 3, 316–321 (2006)

    Article  Google Scholar 

  22. M. Ghoranneviss, S. Shahidi, B. Moazzenchi, A. Anvari, A. Rashidi, H. Hosseini, Comparison between decolorization of denim fabrics with oxygen and argon glow discharge. Surf. Coat. Technol. 201, 4926–4930 (2007)

    Article  Google Scholar 

  23. S. Shahidi, M. Ghoranneviss, B. Moazzenchi, A. Rashidi, D. Dorranian, Effect of using cold plasma on dyeing properties of polypropylene fabrics. Fibers Polym. 8(1), 123–129 123 (2007)

    Google Scholar 

  24. S. Shahidi, B. Moazzenchi, M. Ghoranneviss, S. Azizi, Investigation on dyeability of polypropylene fabrics grafted with chitosan after plasma modification. Eur. Phys. J. Appl. Phys. 62, 10801 (2013)

    Article  ADS  Google Scholar 

  25. S. Shahidi, M. Ghoranneviss, Investigation on dye ability and antibacterial activity of nanolayer platinum coated polyester fabric using DC magnetron sputtering. Prog. Org. Coat. 70, 300–303 (2011)

    Article  Google Scholar 

  26. M. Ghoranneviss, S. Shahidi, A. Anvari, Z. Motaghi, J. Wiener, I. Šlamborová, Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Prog. Org. Coat. 70(4), 388–393 (2011)

    Article  Google Scholar 

  27. S. Shahidi, M. Ghoranneviss, Effect of Plasma on Dyeability of Fabrics, chapter 15. Textile Dyeing, pp. 327–350

  28. S. Shahidi, M. Ghoranneviss, B. Moazzenchi, A. Rashidi, D. Dorranian, Study of surface modification of wool fabrics using low temperature plasma, in Proceedings of the 3rd International Conference on the Frontiers of Plasma Physics and Technology (PC/5099)

  29. S. Shahidi, M. Ghoranneviss, B. Moazzenchi, D. Dorranian, A. Rashidi, Water repellent properties of cotton and PET fabrics using low temperature plasma of Argon 10. XXVIIth ICPIG, Eindhoven, the Netherlands, 18–22 July, (2005)

  30. S. Shahidi, M. Ghoranneviss, B. Moazzenchi, A. Anvari, A. Rashidi, Aluminum coatings on cotton fabrics with low temperature plasma of argon and oxygen. Surf. Coat. Technol. 201, 5646–5650 (2007)

    Article  Google Scholar 

  31. S. Shahidi, A. Rashidi, M. Ghoranneviss, A. Anvari, J. Wiener, Plasma effects on anti-felting properties of wool fabrics. Surf. Coat. Technol. 205, S349–S354 (2010)

    Article  Google Scholar 

  32. M. Ghoranneviss, S. Shahidi, Flame retardant properties of plasma pretreated/metallic salt loaded cotton fabric before and after direct dyeing. J. Fusion Energ. (2013). doi:10.1007/s10894-013-9642-9

  33. S. Shahidi, M. Ghoranneviss, Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric. J. Fusion Energ. (2013). doi:10.1007/s10894-013-9645-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Shahidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahidi, S., Ghoranneviss, M. & Moazzenchi, B. New Advances in Plasma Technology for Textile. J Fusion Energ 33, 97–102 (2014). https://doi.org/10.1007/s10894-013-9657-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-013-9657-2

Keywords

Navigation