Skip to main content

Advertisement

Log in

Effects of Hot Limiter Biasing on Tokamak Runaway Discharges

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this research hot limiter biasing effects on the Runaway discharges were investigated. First wall of the tokamak reactors can affects serious damage due to the high energy runaway electrons during a major disruption and therefore its life time can be reduced. Therefore, it is important to find methods to decrease runaway electron generation and their energy. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state. In this article generation of runaway electrons and the energy they can obtain will be investigated theoretically. Moreover, in order to apply radial biasing an emissive limiter biasing is utilized. The biased limiter can apply +380 V in the status of cold and hot to the plasma and result in the increase of negative bias current in hot status. In fact, in this experiment we try to decrease the generation of runaway electrons and their energy by using emissive limiter biasing inserted on the IR-T1 tokamak. The mean energy of these electrons was obtained by spectroscopy of hard X-ray. Also, the plasma current center shift was measured from the vertical field coil characteristics in presence of limiter biasing. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of plasma column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Martin-Solis et al., Phys. Plasmas 5, 2370 (1998)

    Article  ADS  Google Scholar 

  2. J.R. Martin-Solis et al., Phys. Plasmas 6, 3925 (1999)

    Article  ADS  Google Scholar 

  3. R. Jaspers et al., Nucl. Fusion 33, 1775 (1993)

    Article  ADS  Google Scholar 

  4. V.V. Plyusnin et al., Nucl. Fusion 46, 277 (2006)

    Article  ADS  Google Scholar 

  5. V.V. Parail et al., Nucl. Fusion 18, 303 (1978)

    Article  ADS  Google Scholar 

  6. K.H. Finken et al., Nucl. Fusion 30, 859 (1990)

    Article  Google Scholar 

  7. R. Yoshino et al., Nucl. Fusion 39, 151 (1999)

    Article  ADS  Google Scholar 

  8. R.D. Gill et al., Nucl. Fusion 42, 1039 (2002)

    Article  ADS  Google Scholar 

  9. R. Yoshino et al., Nucl. Fusion 40, 1293 (2000)

    Article  ADS  Google Scholar 

  10. Y. Kawano et al, in Proceedings of 16th International Conference on Fusion Energy (Montreal, 1996) vol 1 (IAEA, Vienna, 1997) p. 345

  11. Y. Kawano et al in Proceedings 24th European Conference on Controlled Fusion and Plasma Physics (Berchtesgaden) vol 21A, part II (European Physical Society, Geneva, 1997) p. 501

  12. E. Farshi et al., Plasma Phys. Rep. 27, 545 (2001)

    Article  ADS  Google Scholar 

  13. R. Jaspers et al., Phys. Rev. Lett. 72, 4093 (1994)

    Article  ADS  Google Scholar 

  14. R.J. Zhou et al., Phys. Scr. 84, 015501 (2011)

    Article  ADS  Google Scholar 

  15. H. Dreicer, Phys. Rev. 115, 238 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M.R. Ghanbari et al., Phys. Scr. 83, 055501 (2011)

    Article  ADS  Google Scholar 

  17. J. Boedo et al., Nucl. Fusion 40, 1397 (2000)

    Article  ADS  Google Scholar 

  18. K.H. Burrell, Phys. Plasmas 4, 1499 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Silva et al., Plasma Phys. Control. Fusion 46, 163 (2004)

    Article  ADS  Google Scholar 

  20. I.C. Nascimento et al., Nucl. Fusion 45, 796 (2005)

    Article  ADS  Google Scholar 

  21. G. Van Oost et al., Plasma Phys. Control. Fusion 45, 621 (2003)

    Article  ADS  Google Scholar 

  22. R. Weynants et al., Plasma Phys. Control. Fusion 35, B177 (1993)

    Article  ADS  Google Scholar 

  23. C. Silva et al., Nucl. Fusion 44, 799 (2004)

    Article  ADS  Google Scholar 

  24. L. Rodŕıguez-Rodrigo et al., Phys. Rev. Lett. 74, 3987 (1995)

    Article  ADS  Google Scholar 

  25. L. Rodŕıguez-Rodrigo et al., Nucl. Fusion 34, 649 (1994)

    Article  ADS  Google Scholar 

  26. C. Rasouli et al., Rev. Sci. Instrum. 80, 013503 (2009)

    Article  ADS  Google Scholar 

  27. K. Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (NIFS, Toki, 2000) chapter 2, p. 18

  28. R.M. Kulsrud et al., Phys. Rev. Lett. 31, 690 (1973)

    Article  ADS  Google Scholar 

  29. T. Kudyakov et al., Nucl. Fusion 48, 122002 (2008)

    Article  ADS  Google Scholar 

  30. D. Mosher, Phys. Fluids 18, 846 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salar Elahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salar Elahi, A., Ghoranneviss, M. & Ghanbari, M.R. Effects of Hot Limiter Biasing on Tokamak Runaway Discharges. J Fusion Energ 32, 580–588 (2013). https://doi.org/10.1007/s10894-013-9618-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-013-9618-9

Keywords

Navigation