Skip to main content
Log in

Design and Fabrication of 11.2 kJ Mather-Type Plasma Focus IR-MPF-1 with High Drive Parameter

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Drive parameter is one of the most important and influential factors in design and construction of plasma focus devices. This parameter controls the speed of current sheath both in the radial and the axial phases; as a result, the final temperature of the pinched plasma as well as the speed of moving-boiler (IEEE Trans Plasma Sci, 38:2096 in 2010). Therefore, to design a machine with high drive parameter, the IR-MPF-1 device (Iranian-Mather Type Plasma Focus1) was designed and constructed. In this work, Lee’s model and semi-empirical formulas were used to achieve the anode length. Using neutron counter (HVTC 1001 GM) in the IR-MPF-1 device (bank energy of 11.2 kJ and 3.2 torr pressure) with deuterium operational gas, the number of 5.7 × 108 neutron/shot was observed. High amount of neutron yield according to the relatively small size of the device represents the effective role of the drive parameter on the fusion products in plasma focus machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Soto, Plasma Phys. Control. Fusion. 47, A361 (2005)

    Article  ADS  Google Scholar 

  2. P. Silva et al., Appl. Phys. Lett. 83, 16 (2003)

    Article  ADS  Google Scholar 

  3. M. Zakaullah et al., Plasma Sour. Sci. Technol. 11, 377–382 (2002)

    Article  ADS  Google Scholar 

  4. E. Angeli et al., Appl. Radiat. Isot. 63, 545–551 (2005)

    Article  Google Scholar 

  5. T. Zhang et al., IEEE Trans. Plasma Sci. 34, 5 (2006)

    MATH  Google Scholar 

  6. S. Lee, IEEE Trans. Plasma Sci. 24, 3 (1996)

    Google Scholar 

  7. N.K. Neog, S.R. Mohanty, Phys. Lett. A. 361, 377–381 (2007)

    Article  ADS  Google Scholar 

  8. C. Moreno, F. Casanova et al., Plasma Phys. Control. Fusion. 45, 1989–1999 (2003)

    Article  ADS  Google Scholar 

  9. C. Moreno, H. Bruzzone et al., IEEE Trans. Plasma Sci. 28(5), 1735–1741 (2000)

    Article  ADS  Google Scholar 

  10. R.S. Rawat, T. Zhang et al., Plasma Sour. Sci. Technol. 13, 569–575 (2004)

    Article  ADS  Google Scholar 

  11. H.R. Yousefi, F.M. Aghamir et al., Phys. Lett. A. 361, 360–363 (2007)

    Article  ADS  Google Scholar 

  12. K. Hübner, H. Bruhnsand, K. Steinmetz, Phys. Lett. A. 69(4), 269–272 (1978)

    Article  ADS  Google Scholar 

  13. S.L. YAP et al., Jpn. J. Appl. Phys. 44(11), 8125–8132 (2005)

    Article  ADS  Google Scholar 

  14. H.R. Yousefi et al., Phys. Plasma. 13, 114506 (2006)

    Article  ADS  Google Scholar 

  15. T.D. Mahabadi, M.A. Tafreshi, Plasma Phys. Control. Fusion. 49, 1447–1455 (2007)

    Article  ADS  Google Scholar 

  16. M. Abdollahzadeh, S.M. Sadat Kiai, J. Fusion Energ. 29, 218–222 (2010)

    Article  Google Scholar 

  17. S. Goudarzi et al., Czech J. Phys. 55(1), 45–53 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Damideh et al., J Fusion Energ. Online First™, 9 April 2011

  19. L. Soto, Plasma Phys.Control.Fusion. 47, 361 (2005)

    Article  ADS  Google Scholar 

  20. A.A. Zaeem, IEEE Trans. Plasma Sci. 38, 2096 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Damideh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damideh, V., Zaeem, A.A., Heidarnia, A. et al. Design and Fabrication of 11.2 kJ Mather-Type Plasma Focus IR-MPF-1 with High Drive Parameter. J Fusion Energ 31, 47–51 (2012). https://doi.org/10.1007/s10894-011-9427-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9427-y

Keywords

Navigation