Skip to main content
Log in

Filament Temperature Dependence of the Nano-size MgO Particles Prepared by the HWCVD Technique

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticles play an important role in many nanotechnical applications. Among these, magnesium oxide has attracted great attention in different applications. Here, hot wire chemical vapor deposition (HWCVD) method was employed for the deposition of magnesium oxide nanoparticles on pre-ultrasonically cleaned P type Si (111) substrates of 1 cm × 1 cm. High purity magnesium ribbon was heated up to high temperatures in the vicinity of tungsten filament in oxygen surrounding medium at a constant working pressure. The samples were deposited by the proposed method and their properties were studied by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX). The key parameters of our experiments including results of changes in filament temperature on the properties of Magnesium oxide nanoparticles are presented here. The mean size of the nano MgO Particles was between 80–120 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Manin et al., Surf. coat. Technol 200, 1424–1429 (2005)

    Article  Google Scholar 

  2. K.V. Rao, C.S. Sunandana, Synthesis, and reactivity In Inorg. Met. nano-met. chem 38, 173–178 (2008)

    Google Scholar 

  3. S.Y. Lee et al., J. Crystal. Growth 236, 635–639 (2002)

    Article  ADS  Google Scholar 

  4. Y.W. Choi, J. Kim, Thin Solid Films 460, 295–299 (2004)

    Article  ADS  Google Scholar 

  5. Y. Matsuda et al., Thin Solid Films 457, 64–68 (2004)

    Article  ADS  Google Scholar 

  6. C. pan et al., SID 98 DIGEST. 865 (1998)

  7. T. Hatanpaa et al., Chem. Mater 11, 1846 (1999)

    Article  Google Scholar 

  8. T. Ishiguro et al., Jpn. J. Appl. Phys. Pt1 35, 3537 (1996)

    Article  Google Scholar 

  9. T.X. Phuoc et al., Optics. laser s. Eng 46, 829–834 (2008)

    Article  ADS  Google Scholar 

  10. F. Niu et al., Mater. Res. Soc. Symp. Proc 606, 45 (2000)

    Article  Google Scholar 

  11. L.D. Chang et al., Appl. Phys. Lett 60, 1753 (1992)

    Article  ADS  Google Scholar 

  12. E. Knozinger et al., J. mol. catal. A 162, 83–95 (2000)

    Article  Google Scholar 

  13. T. Matsumoto et al., Ceramics. Int 16, 325–331 (1990)

    Article  Google Scholar 

  14. T. Maruyama et al., Jpn. J. Appl. Phys. 29, L810 (1990)

    Article  ADS  Google Scholar 

  15. E. Fuji et al., Jpn. J. Appl. Phys. 33 (1994)

  16. Y. Ding et al., Chem. Mater 13, 435 (2001)

    Article  Google Scholar 

  17. J.G. Yoon et al., Appl. Phys. Lett 66, 2664 (1995)

    Article  ADS  Google Scholar 

  18. J.G. Yoon et al., Appl. Phys. Lett 66, 2661 (1995)

    Article  ADS  Google Scholar 

  19. In.-Chyuan. Ho et al., J. Sol-Gel Sci. Tech 9, 295–301 (1997)

    Google Scholar 

  20. Y.C. Hong et al., Chem. Phys. Lett. 422, 174–178 (2006)

    Article  ADS  Google Scholar 

  21. B. J. Kooi et al., Appl. Phys. Lett. 89, 161914 (2006)

  22. P.P. Fedorov et al., Inorg. Mater 43, 502–504 (2007)

    Article  Google Scholar 

  23. J.Y. Park et al., J. Ind. Eng. Chem 12, 882–887 (2006)

    Google Scholar 

  24. A.G. Nasibulin et al., Cryst. Grow. design 10, 414–417 (2010)

    Article  Google Scholar 

  25. Q. Yang et al., Nanotechnology 15, 1004–1008 (2004)

    Article  ADS  Google Scholar 

  26. J. Thangala et al., Thin Solid Films 517, 3600–3605 (2009)

    Article  ADS  Google Scholar 

  27. H.W. Kim, Chem. Phys. Lett. 442, 165–169 (2006)

    Article  ADS  Google Scholar 

  28. J. Zhang et al., Appl. Phys. A 73, 773–775 (2001)

    Article  ADS  Google Scholar 

  29. N. Takahashi, Solid. State. Sci 9, 722–724 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge full support from the Karaj Branch of Islamic Azad University and also, Science and research branch of Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Majid Borghei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghei, S.M., Kamali, S., Shakib, M.H. et al. Filament Temperature Dependence of the Nano-size MgO Particles Prepared by the HWCVD Technique. J Fusion Energ 30, 433–436 (2011). https://doi.org/10.1007/s10894-011-9394-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9394-3

Keywords

Navigation