Skip to main content
Log in

Numerical Modeling of Gasification of Solid Hydracarbon Materials in a Heated-Inert-Gas Flow

  • HEAT CONDUCTION AND HEAT EXCHANGE IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A procedure of mathematical modeling of the characteristics of gasification of a low-melting hydrocarbon material in the flow of a heated inert gas has been proposed which is based on solving the problem of coupled heat transfer in the gas in the channel and in the region occupied by the solid hydrocarbon material. Dependences of the shape of the boundaries of the solid material on the temperature of a carrier gas and on time have been obtained. Calculation results are compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ahmed and A. K. Gupta, Hydrogen production from polystyrene pyrolysis and gasifi cation: Characteristics and kinetics, Int. J. Hydrogen Energy, 34, Article ID 6253-64 (2009).

  2. A. Demirbas, Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons, J. Anal. Appl. Pyrolysis, 72, 97–102 (2004).

    Article  Google Scholar 

  3. J. Scheirs and W. Kaminskys, Feedstock Recycling and Pyrolysis of Waste Plastics. Converting Waste Plastic into Diesel and Other Fuels, John Wiley & Sons, Hoboken, ISBN 978-0-470-02152-1 (2006).

  4. W. Kaminsky, B. Schlesselmann, and C. Simon, Olefins from polyolefins and mixed plastics by pyrolysis, J. Anal. Appl. Pyrolysis, 32, 19–27 (1995).

    Article  Google Scholar 

  5. T. Faravelli, G. Bozzano, C. Scassa, M. Perego, S. Fabini, E. Ranzi, and M. Dente, Gas product distribution from polyethylene pyrolysis, J. Anal. Appl. Pyrolysis, 52, 87–103 (1999).

    Article  Google Scholar 

  6. P. Savage, Mechanisms and kinetics models for hydrocarbon pyrolysis, J. Anal. Appl. Pyrolysis, 54, 109–126 (2000).

    Article  Google Scholar 

  7. P. Zamostny, Z. Belohlav, L. Starkbaumova, and J. Patera, Experimental study of hydrocarbon structure eff ects on the composition of its pyrolysis products, J. Anal. Appl. Pyrolysis, 87, Article ID 207-16 (2010).

  8. A. Aboulkas, K. El Harfi , and A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms, Energy Convers. Manage., 51, Article ID 1363-9 (2010).

  9. I. S. Aver'kov, K. Yu. Aref′ev, A. V. Baikov, and L. S. Yanovskii, Investigation into the effi ciency of regenerative cooling of a straight-flow combustion chamber by gasification products of energy-condensed material, Teplofi z. Aéromekh., 24, No. 1, 149–160 (2017).

    Google Scholar 

  10. L. S. Yanovskii, A. V. Baikov, and I. S. Aver′kov, Assessment of the possibility of creating a solid-propellant thermojet with an active-cooling system, Tepl. Prots. Tekh., No. 3, 111–116 (2016).

    Google Scholar 

  11. E. A. Salganskii, V. M. Kislov, S. V. Glazov, A. F. Zholudev, and G. B. Manelis, Features of fi ltration combustion of pyrolizable solid fuel, Fiz. Goreniya Vzryva, 46, No. 5, 42–47 (2010).

    Google Scholar 

  12. V. Yu. Aleksandrov, K. Yu. Aref′ev, M. A. Il′chenko, and M. V. Ananyan, Investigation into the efficiency of operating processes in miniature generators of a high-enthalpy air flow, Nauka Obrazov., No. 8, 75–86 (2015).

    Google Scholar 

  13. A. I. Shabunin, S. V. Kalinin, V. I. Sarab′ev, D. A. Yagodnikov, and A. R. Polyanskii, Results of investigation and development of low-temperature fast-burning gas-generating fuels for systems of movement of actuator elements, in: Science and Education [in Russian], MGTU im. N. É. Baumana Press, Moscow (2012).

  14. V. I. Zvegintsev, A. V. Fedorychev, D. V. Zhesterev, I. R. Mishkin, and S. M. Frolov, Gasification of low-melting hydrocarbon materials in a high-temperature gas flow, Gorenie Vzryv, 12, No. 3, 108–116 (2019).

    Article  Google Scholar 

  15. E. A. Salgansky, N. A. Lutsenko, V. A. Levin, and L. S. Yanovskiy, Modeling of solid fuel gasification in combined charge of low-temperature gas generator for high-speed ramjet engine, Aerospace Sci. Technol., 84, 31–36 (2019).

    Article  Google Scholar 

  16. V. A. Levin, N. Lutsenko, E. Salganskii, and L. Yanovskii, Model of gasification of solid fuel in a combined charge of a low-temperature aircraft gas generator, Dokl. Akad. Nauk, 482, No. 2, 150–154 (2018).

    Google Scholar 

  17. A. N. Shiplyuk, V. I. Zvegintsev, S. M. Frolov. D. A. Vnuchkov, T. A. Kiseleva, V. A. Kislovsky, S. V. Lukashevich, A. Yu. Melnikov, and D. G. Nalivaychenko, Gasification of low-melting hydrocarbon material in the airflow heated by hydrogen combustion, Int. J. Hydrogen Energy, 45, No. 15, 9098–9112 (2020).

    Article  Google Scholar 

  18. A. N. Shiplyuk, V. I. Zvegintsev, S. M. Frolov. D. A. Vnuchkov, V. A. Kislovsky, T. A. Kiseleva, S. V. Lukashevich, A. Yu. Melnikov, and D. G. Nalivaychenko, Gasification of low-melting fuel in a high-temperature flow of inert gas, J. Propuls. Power, 37, No. 1, 20–28 (2021).

    Article  Google Scholar 

  19. D. W. Netzer, Modeling solid-fuel ramjet combustion, J. Spacecraft Rockets, 14, No. 12, 762–766 (1977).

    Article  Google Scholar 

  20. M. Nusca, Steady flow combustion model for solid-fuel ramjet projectiles, Proc. 25th Joint Propulsion Conf., Amer. Inst. of Aeronautics, Astronautics, 1989.

  21. R. Ben-Arosh et al., Theoretical study of a solid fuel scramjet combustor, Acta Astronaut., 45, No. 3, 155–166 (1999).

    Article  Google Scholar 

  22. H. Zhang et al., A new model of regression rate for solid fuel scramjet, Int. J. Heat Mass Transf., 144, Article ID 118645 (2019).

  23. B. McDonald and J. Rice, Solid fuel ramjet fuel optimization for maximum impulse-density with respect to air to fuel ratio and relative fuel regression rates derived from thermogravimetric analysis, Aerospace Sci. Technol., 86, 478–486 (2019).

    Article  Google Scholar 

  24. T. Milshtein and D. W. Netzer, Three-dimensional, primitive-variable model for solid-fuel ramjet combustion, J. Spacecraft Rockets, 23, No. 1, 113–117 (1986).

    Article  Google Scholar 

  25. A. Coronetti and W. A. Sirignano, Numerical analysis of hybrid rocket combustion, J. Propuls. Power, 29, No. 2, 371–384 (2013).

    Article  Google Scholar 

  26. V. K. Bulgakov and A. M. Lipanov, The Theory of Erosive Combustion of Solid Fuels [in Russian], Nauka, Moscow (2001).

    Google Scholar 

  27. S. M. Frolov, V. I. Zvegintsev, V. S. Aksenov, I. V. Bilera, M. V. Kazachenko, I. O. Shamshin, P. A. Gusev, M. S. Belotserkovskaya, and E. V. Koverzanova, Detonation power of air mixtures of polypropylene pyrolysis products, Gorenie Vzryv, 11, No. 4, 44–60 (2018).

    Article  Google Scholar 

  28. S. M. Aul'chenko, Controlling the process of titanium dioxide nanoparticle growth in a continuous-flow plasmachemical reactor, J. Eng. Phys. Thermophys., 86, No. 5, 1027–1034 (2013).

    Article  Google Scholar 

  29. S. M. Aul′chenko and V. I. Zvegintsev, Use of the characteristics of combustion of solid fuel, obtained experimentally, for calculating gas-thermodynamic processes in a combustion chamber, Gorenie Vzryv, 10, No. 4, 57–62 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 1, pp. 22–30, January–February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aul’chenko, S.M., Zvegintsev, V.I. & Frolov, S.M. Numerical Modeling of Gasification of Solid Hydracarbon Materials in a Heated-Inert-Gas Flow. J Eng Phys Thermophy 95, 20–28 (2022). https://doi.org/10.1007/s10891-022-02452-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02452-8

Keywords

Navigation