Skip to main content
Log in

Account of Interfractional Heat Transfer in a Hyperbolic Model of a One-Velocity Heterogeneous Mixture

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A modified generalized equilibrium model of a one-velocity heterogeneous mixture has been presented in which account is taken of interfractional heat transfer. A characteristic analysis of the model′s equations has been made, and their hyperbolicity has been shown. The Prandtl–Meyer problem and the problem on air–droplet-mixture flow past a wedge has been solved on a curvilinear structured grid using the Godunov method with a linearized Riemannian solver. Results of numerical calculations have been compared with self-similar solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatullin, Dynamics of Multiphase Media, Part I [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. V. S. Surov, One-velocity model of a heterogeneous medium, Mat. Modelir., 13, No. 10, 27–42 (2001).

    MathSciNet  MATH  Google Scholar 

  3. J. Wackers and B. Koren, A fully conservative model for compressible two-fluid flow, Int. J. Numer. Methods Fluids, 47, 1337–1343 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664–698 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Deledicque and M. V. Papalexandris, A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit, J. Comput. Phys., 227, 9241–9270 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Saurel, F. Petitpas, and R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678–1712 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. J. Kreeft and B. Koren, A new formulation of Kapila′s five-equation model for compressible two-fluid flow, and its numerical treatment, J. Comput. Phys., 229, 6220–6242 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. S. Surov, One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel, Zh. Vychisl. Mat. Mat. Fiz., 48, No. 6, 1111–1125 (2008).

    MathSciNet  MATH  Google Scholar 

  9. V. S. Surov and I. V. Berezanskii, About the divergent form of equations for a one-velocity multicomponent mixture, J. Eng. Phys. Thermophys., 88, No. 5, 1248–1255 (2015).

    Article  Google Scholar 

  10. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Gas-Dynamics Problems [in Russian], Nauka, Moscow (1976).

  11. G. Wallis, One-Dimensional Two-Phase Flow [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  12. V. S. Surov, On a variant of the method of characteristics for calculating one-velocity flows of a multicomponent mixture, J. Eng. Phys. Thermophys., 83, No. 2, 366–372 (2010).

    Article  Google Scholar 

  13. V. S. Surov, On a method of approximate solution of the Riemann problem for a one-velocity flow of a multicomponent mixture, J. Eng. Phys. Thermophys., 83, No. 2, 373–379 (2010).

    Article  Google Scholar 

  14. E. F. Toro, Riemann solvers with evolved initial condition, Int. J. Numer. Methods Fluids, 52, 433–453 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations [in Russian], 2nd supplemented and revised edn., Fizmatlit, Moscow (2012).

  16. V. S. Surov, Riemann problem for the one-velocity model of a multicomponent mixture, Teplofiz. Vys. Temp., 47, No. 2, 283–291 (2009).

    Google Scholar 

  17. A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, Action of air shock waves on obstacles covered with a porous layer, Vychisl. Tekhnol., 6, No. 3, 7–20 (2001).

    MATH  Google Scholar 

  18. V. S. Surov, Certain self-similar problems of flow of a one-velocity heterogeneous medium, J. Eng. Phys. Thermophys., 80, No. 6, 1237–1246 (2007).

    Article  Google Scholar 

  19. V. S. Surov, Shock adiabat on a one-velocity heterogeneous medium, J. Eng. Phys. Thermophys., 79, No. 5, 886–892 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Surov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 3, pp. 610–619, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surov, V.S. Account of Interfractional Heat Transfer in a Hyperbolic Model of a One-Velocity Heterogeneous Mixture. J Eng Phys Thermophy 90, 575–585 (2017). https://doi.org/10.1007/s10891-017-1603-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1603-0

Keywords

Navigation