Skip to main content
Log in

Experimental Investigation of the Supersonic Flow over an Axisymmetric Ring Cavity

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper presents the results of the experimental investigation of the supersonic flow over a ring cavity of rectangular cross-section on a cylindrical body with a conical tip. The evolution of the flow over a cavity with its continuously changing extent has been investigated. The transition zone boundaries within which both an open and a closed schemes of flow are possible have been determined by the parameter of the relative extent of the cavity. It has been shown that the flow conditions in the transition zone depend on the prehistory of the flow. The main stages of cavity flow restricuting at the transition zone boundaries have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Charwat, J. N. Roos, F. C. Dewey, and J. A. Hitz, An investigation of separated flows. Part I: The pressure field, J. Aerosp. Sci., 28, No. 6, 457−470 (1961).

    Article  MATH  Google Scholar 

  2. A. F. Charwat, C. F. Dewey, J. N. Roos, and J. A. Hitz, An investigation of separated flows. Part II: Flow in the cavity and heat transfer, J. Aerosp. Sci., 28, No. 7, 513−527 (1961).

    Article  MATH  Google Scholar 

  3. R. L. Stalling and F. J. Wilcox, Experimental Cavity Pressure Distribution at Supersonic Speeds, NASA TP 2683 (1987).

  4. J. Zhang, E. Morishita, T. Okunuki, and H. Itoh, Experimental investigation on the mechanism of flow-type changes in supersonic cavity flows, Trans. Jpn. Soc. Aeronaut. Space Sci., 45, No. 149, 170–179 (2002).

    Article  Google Scholar 

  5. M. G. Morozov, Similarity of supersonic separation zones, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 115−118 (1970).

  6. V. I. Penzin, Separation flow in a ring groove, Uch. Zap. TsAGI, VII, No. 6, 124−130 (1976).

    Google Scholar 

  7. A. I. Shvets, Investigation of the flow in a cylindrical recess on an axisymmetric body in supersonic flow, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 123–131 (2002).

  8. S. V. Guvernyuk, A. F. Zubkov, M. M. Simonenko, and A. I. Shvets, Experimental investigation of the three-dimensional supersonic flow over an axisymmetric body with a ring cavity, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 136–142 (2014).

  9. S. V. Guvernyuk, A. F. Zubkov, and M. M. Simonenko, On the observation of the aerodynamic hysteresis in supersonic flow over a ring cavity on an axisymmetric body, in: Advances in the Mechanics of Continuous Media, Collected papers at the Int. Conf. timed to the 75th birthday of Academician V. A. Levin, OOO "Megaprint," Irkutsk (2014), pp. 163–168.

  10. K. Mohri and R. Hillier, Computational and experimental study of supersonic flow over axisymmetric cavities, Shock Waves, 21, No. 3, 175−191 (2011).

    Article  Google Scholar 

  11. A. D. Savel′ev, Numerical simulation of the supersonic flow over extended grooves, Uch. Zap. TsAGI, XLII, No. 3, 60−72 (2011).

    Google Scholar 

  12. S. J. Lawson and G. N. Barakos, Review of numerical simulations for high-speed, turbulent cavity flows, Prog. Aerosp. Sci., 47, No. 3, 186−216 (2011).

    Article  Google Scholar 

  13. P. K. Chang, Separation of Flow, Pergamon Press, Oxford (1970).

    MATH  Google Scholar 

  14. F. Wilcox Jr., Tangential, semisubmerged, and internal store carriage and separation at supersonic speeds, AIAA Paper, 91-0198 (1991).

  15. L. N. Cattafesta, D. R. Williams, C. W. Rowley, and F. S. Alvi, Review of active control of flow-induced cavity resonance, AIAA Paper, 2003-3567 (2003).

  16. L. N. Cattafesta, Q. Song, D. R. Williams, C. W. Rowley, and F. S. Alvi, Active control of flow-induced cavity oscillations, Prog. Aerosp. Sci., 44, No. 7, 479−502 (2008).

    Article  Google Scholar 

  17. N. Zhuang, F. S. Alvi, M. B. Alkislar, and C. Shih, Supersonic cavity flows and their control, AIAA J., 44, No. 9, 2118−2128 (2006).

    Article  Google Scholar 

  18. J. Zhang, E. Morishita, T. Okunuki, and H. Itoh, Control of closed-type supersonic cavity flows, ICAS2002 CONGRESS, 393.1–393.8 (2002).

  19. N. S. Vikramaditya and J. Kurian, Experimental study of influence of trailing wall geometry on cavity oscillations in supersonic flow, Exp. Therm. Fluid Sci., 54, 102−109 (2014).

    Article  Google Scholar 

  20. X. Zhang and J. A. Edwardst, Experimental investigation of supersonic flow over two cavities in tandem, AIAA J., 30, No. 5, 1182−1190 (1992).

    Article  Google Scholar 

  21. N. Taborda, D. Bray, and K. Knowle, Experimental investigation into transonic flows over tandem cavities, Aeronaut. J., 105, No. 1045, 119−124 (2001).

    Google Scholar 

  22. V. N. Zaikovskii, Ya. I. Smul′skii, and V. M. Trofimov, Influence of tandem cavities on the heat transfer in a supersonic flow, Teplofiz. Aéromekh., No. 3, 423−430 (2002).

  23. T. Mathur, M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, and F. Billig, Supersonic combustion experiments with a cavity-based fuel injector, J. Propuls. Power, 17, No. 6, 1305−1312 (2001).

    Article  Google Scholar 

  24. T. Ukai, H. Zare-Behtash, E. Erdem, K. H. Lo, K. Kontis, and S. Obayashi, Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow, Exp. Therm. Fluid Sci., 52, 59−67 (2014).

    Article  Google Scholar 

  25. R. C. Palharini and T. J. Scanlon, Aerothermodynamic comparison of two- and three-dimensional rarefied hypersonic cavity flows, J. Spacecraft Rockets, 51, No. 5, 1619−1630 (2014).

    Article  Google Scholar 

  26. S. A. Isaev, Yu. M. Lipnitskii, A. N. Mikhalev, A. V. Panasenko, and A. E. Usachov, Simulation of the supersonic turbulent flow over a cylinder with coaxial disks, J. Eng. Phys. Thermophys., 84, Issue 4, 827–839 (2011).

    Article  Google Scholar 

  27. M. R. Malik, Prediction and control of transition in supersonic and hypersonic boundary layers, AIAA J., 27, No. 11, 1487–1493 (1989).

    Article  Google Scholar 

  28. V. Ya. Borovoi, Yu. Yu. Kolochinskii, and L. V. Yakovleva, Investigation of the influence of the unit Reynolds number on the boundary layer transition on a sharp cone, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 32−38 (1982).

  29. A. A. Maslov and S. G. Shevel′kov, Features of the laminar boundary layer transition on a cone, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 23−27 (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Guvernyuk.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 3, pp. 670–679, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guvernyuk, S.V., Zubkov, A.F. & Simonenko, M.M. Experimental Investigation of the Supersonic Flow over an Axisymmetric Ring Cavity. J Eng Phys Thermophy 89, 678–687 (2016). https://doi.org/10.1007/s10891-016-1426-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1426-4

Keywords

Navigation