Skip to main content
Log in

Combustion of a Methane–Air Mixture in a Slot Burner with an Inert Insert in Mass Transfer to the Environment

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A problem on combustion of a methane–air mixture in a slot burner with an internal insert in mass transfer from the burner′s exterior wall to the environment has been solved. A mathematical formulation of the problem takes account of the dependence of the diffusion, thermal-conductivity, and heat-transfer coefficients on temperature, and also of the heat removal from the gas to the environment by convective and radiant heat transfer. A numerical investigation has been carried out in a one-dimensional mathematical formulation of the problem in dimensional variables. The boundary of existence of a stable high-temperature regime of combustion of the methane–air mixture has been determined as a function of the rate of feed of the gas, the environmental temperature, and the width of the flow area of the burner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ju and K. Maruta, Microscale combustion: technology development and fundamental research, Prog. Energy Combust. Sci., 37, Issue 6, 669–715 (2011).

    Article  Google Scholar 

  2. J. Ahn, C. Eastwood, L. Sitzki, and P. D. Ronney, Gas-phase and catalytic combustion in heat-recirculating burners, Proc. Combust. Inst., 30, Issue 2, 2463–2472 (2005).

    Article  Google Scholar 

  3. C.-H. Chen and P. D. Ronney, Three-dimensional effects in counterflow heat-recirculating combustors, Proc. Combust. Inst., 33, No. 2, 3285–3291 (2011).

    Article  Google Scholar 

  4. P. D. Ronney, Analysis of non-adiabatic heat-recirculating combustors, Combust. Flame, 135, No. 4, 421–439 (2003).

    Article  Google Scholar 

  5. A. Yu. Krainov and K. M. Moiseeva, Regimes of combustion of a lean methane–air mixture in a U-shaped burner, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 2 (28), 69–76 (2014).

  6. A. Yu. Krainov and K. M. Moiseeva, Oscillatory regimes of combustion of a lean methane–air mixture in a U-shaped burner, Proc. XXXI Siberian Thermophys. Seminar Devoted to the 100th Birth Anniversary of Acad. S. S. Kutateladze, Novosibirsk (2014), pp. 207–210.

  7. K. Maruta, J. K. Parc, K. C. Oh, T. Fujimori, S. S. Minaev, and R. V. Fursenko, Characteristics of microscale combustion in a narrow heated channel, Combust., Explos., Shock Waves, 40, No. 5, 516–523 (2004).

    Article  Google Scholar 

  8. Y. Ju and C. W. Choi, An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels, Combust. Flame, 133, No. 4, 483–493 (2003).

    Article  Google Scholar 

  9. R. V. Fursenko and S. S. Minaev, Flame stability in a system with counterflow heat transfer, Fiz. Goreniya Vzryva, 41, No. 2, 17–25 (2005).

    Google Scholar 

  10. K. Maruta, S. S. Minaev, J. K. Parc, K. C. Oh, T. Fujimori, and R. V. Fursenko, Features of combustion of gases in a narrow heated channel, Fiz. Goreniya Vzryva, 40, No. 5, 21–29 (2004).

    Google Scholar 

  11. S. S. Minaev, E. R. Sereshchenko, R. V. Fursenko, A. Fan, and K. Maruta, Separable flames in a narrow channel with a temperature gradient in the walls, Fiz. Goreniya Vzryva, 45, No. 2, 12–19 (2009).

    Google Scholar 

  12. A. Yu. Krainov and K. M. Moiseeva, Oscillatory regime of diffusion combustion in a narrow tube, Proc. XXXI Siberian Thermophys. Seminar Devoted to the 100th Birth Anniversary of Acad. S. S. Kutateladze, Novosibirsk (2014), pp. 203–206.

  13. V. V. Zamashchikov, On gas combustion in a narrow tube, Fiz. Goreniya Vzryva, 36, No. 2, 22–26 (2000).

    Google Scholar 

  14. Ya. B. Zel′dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  15. R. S. Burkina and K. M. Moiseeva, Combustion in an ideally stirred reactor with an inert internal insert, Khim. Fiz., 33, No. 5, 47–53 (2014).

    Google Scholar 

  16. K. G. Shadinskii and V. V. Barzykin, Regularities of ignition of gases by a heated surface with allowance for diffusion and hydrodynamics, Fiz. Goreniya Vzryva, 4, No. 2, 176–181 (1968).

    Google Scholar 

  17. A. A. Dement′ev and A. Yu. Krainov, On the problem of propagation of a laminar flame in a gas with inert dust, Fiz. Goreniya Vzryva, 47, No. 4, 70–75 (2011).

    Google Scholar 

  18. V. V. Kuznetsov, O. V. Vitovskii, S. V. Dimov, and S. P. Kozlov, Heat and mass transfer in chemical transformations in slot and microchannel reactors, Proc. 4th Russian National Conf. on Heat Transfer, October 23–27, 2006, Moscow (2006), pp. 266–269.

  19. Petukhov and V. K. Shikov (Eds.), Handbook of Heat Exchangers: in 2 vols. [Russian translation], Vol. 1, Énergoatomizdat, Moscow (1987).

  20. I. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transmission [in Russian], Énergiya, Moscow (1975).

    Google Scholar 

  21. A. A. Samarskii, An Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  22. B. Lewis and G. Von Elbe, Combustion, Flame, and Explosions in Gases [Russian translation], Mir, Moscow (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Moiseeva.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 2, pp. 435–443, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krainov, A.Y., Moiseeva, K.M. Combustion of a Methane–Air Mixture in a Slot Burner with an Inert Insert in Mass Transfer to the Environment. J Eng Phys Thermophy 89, 449–457 (2016). https://doi.org/10.1007/s10891-016-1395-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1395-7

Keywords

Navigation