Skip to main content
Log in

Experimental Study of the Effects of Collision of Water Droplets in a Flow of High-Temperature Gases

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Using high-speed video recording and cross-correlation "tracer" visualization, the authors have investigated the regularities of the processes of collision of water droplets (characteristic parameters: radii 0.025–0.25 mm, velocities of motion 0.5–12 m/s, and relative concentration 0.001–0.0012 m3 of liquid droplets in 1 m3 of the gas) in their motion in a flow of high-temperature (about 1100 K) gases. The characteristic effects of collision of two droplets, at which combined droplets are formed (coagulation occurs) and conditions for spreading or fragmentation of the latter are implemented, have been singled out. The values of the Weber and Reynolds numbers for droplets before and after the collisions have been established. The influences of the velocities of motion, the dimensions, and the angles of intersection of mechanical trajectories of droplets on the effects of collisions have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Karpov, V. B. Novozhilov, A. A. Galat, and V. K. Bulgakov, Numerical modeling of the effect of fine water mist on the small scale flame spreading over solid combustibles, Proc. Eighth Int. Symp. "Fire Safety Science," 27, 753–764 (2005).

    Article  Google Scholar 

  2. A. Abbud-Madrid, D. Watson, and J. T. McKinnon, On the effectiveness of carbon dioxide, nitrogen and water mist for the suppression and extinction of spacecraft fires, Suppression and Detection Research and Applications Conference, Orlando, USA (2007).

  3. X. K. Xiao, B. H. Cong, X. S. Wang, K. Q. Kuang, K. K. Yuen Richard, and G. X. Liao, On the behavior of flame expansion in pool fire extinguishment with steam jet, J. Fire Sci., 29, No. 4, 339−360 (2011).

    Article  Google Scholar 

  4. T. Carriere, J. R. Butz, S. Naha, A. Brewer, and A. Abbud-Madrid, Fire suppression test using a handheld water mist extinguisher designed for the international space station, 42nd Int. Conf. on Environmental Systems, California, USA (2012).

  5. B. Yao and B. H. Cong, Experimental study of suppressing Poly(methyl methacrylate) fires using water mists, Fire Safety J., 47, 32–39 (2012).

    Article  Google Scholar 

  6. Lyndon Macindoe and Justin Leonard, Moisture content in timber decking exposed to bushfire weather conditions, Fire Mater., 36, No. 1, 49–61 (2012).

    Article  Google Scholar 

  7. Xiangyang Zhou, Stephen P. D′Aniello, and Hong-Zeng Yu, Spray characterization measurements of a pendent fire sprinkler, Fire Safety J., 54, 36–48 (2012).

    Article  Google Scholar 

  8. B. Rodriquez and G. Young, Development of international space station fine water mist portable fire extinguisher, 43rd Int. Conf. on Environmental Systems, July 15−18, 2013, Vail, Colorado, USA.

  9. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Numerical assessment of optimum dimensions of droplets of water under the conditions of its spraying by fire-extinguishing facilities in rooms, Pozharovzryvobezopasnost′, 21, No. 5, 74–78 (2012).

    Google Scholar 

  10. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium, J. Eng. Phys. Thermophys., 86, No. 1, 62–68 (2013).

    Article  Google Scholar 

  11. P. A. Strizhak, Influence of droplet distribution in a "water slug" on the temperature and concentration of combustion products in its wake, J. Eng. Phys. Thermophys., 86, No. 4, 895–904 (2013).

    Article  Google Scholar 

  12. G. V. Kuznetsov and P. A. Strizhak, Numerical investigation of the influence of convection in a mixture of combustion products on the integral characteristics of the evaporation of a finely atomized water drop, J. Eng. Phys. Thermophys., 87, No. 1, 103–111 (2014).

    Article  Google Scholar 

  13. R. S. Volkov, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Experimental study of the change in the mass of water droplets in their motion through high-temperature combustion products, J. Eng. Phys. Thermophys., 86, No. 6, 1413–1418 (2013).

    Article  Google Scholar 

  14. G. V. Kuznetsov and P. A. Strizhak, The motion of a manifold of finely dispersed liquid droplets in the counter flow of high temperature gases, Tech. Phys. Lett., 40, No. 6, 499–502 (2014).

    Article  Google Scholar 

  15. G. V. Kuznetsov and P. A. Strizhak, Evaporation of single droplets and dispersed liquid flow in motion through high temperature combustion products, High Temp., 52, No. 4, 568–575 (2014).

    Article  Google Scholar 

  16. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Influence of the initial parameters of spray water on its motion through a counter flow of high temperature gases, Tech. Phys., 59, No. 7, 959–967 (2014).

    Article  Google Scholar 

  17. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Evaporation of two liquid droplets moving sequentially through hightemperature combustion products, Thermophys. Aeromech., 21, No. 2, 255–258 (2014).

    Article  Google Scholar 

  18. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, The influence of initial sizes and velocities of water droplets on transfer characteristics at high-temperature gas flow, Int. J. Heat Mass Transf., 79, 838–845 (2014).

    Article  Google Scholar 

  19. J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol., 8, 1379–1392 (1997).

    Article  Google Scholar 

  20. J. M. Foucaut and M. Stanislas, Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields, Meas. Sci. Technol., 13, 1058–1071 (2002).

    Article  Google Scholar 

  21. J. V. Simo-Tala, S. Russeil, D. Bougeard, and J.-L. Harion, Investigation of the flow characteristics in a multirow finnedtube heat exchanger model by means of PIV measurements, Exp. Therm. Fluid Sci., 50, 45–53 (2013).

    Article  Google Scholar 

  22. C. Willert, Assessment of camera models for use in planar velocimetry calibration, Exp. Fluids, 41, No. 1, 135−143 (2006).

    Article  Google Scholar 

  23. N. Damaschke, H. Nobach, and C. Tropea, Optical limits of particle concentration for multi-dimensional particle sizing techniques in fluid mechanics, Exp. Fluids, 32, No. 2, 143−152 (2002).

    Article  Google Scholar 

  24. E. K. Akhmetbekov, D. M. Markovich, and M. P. Tokarev, Correlation correction in the method of tracking of particles in flows, Vych. Tekhnol., 15, No. 4, 57–72 (2010).

    MATH  Google Scholar 

  25. E. A. Ibrahim, H. Q. Yangt, and A. J. Przekwas, Modeling of spray droplets deformation and breakup, J. Propuls. Power, 9, No. 4, 651–654 (1993).

    Article  Google Scholar 

  26. S. S. Hwang, Z. Liu, and R. D. Reitz, Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops, Atomization Sprays, 6, No. 3, 353–376 (1996).

    Article  Google Scholar 

  27. A. A. Shreiber, A. M. Podvisotski, and V. V. Dubrovski, Deformation and breakup of drops by aerodynamic loads, Atomization Sprays, 6, No. 6, 667–692 (1996).

    Article  Google Scholar 

  28. J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys., 71, No. 036601, 1−79 (2008).

    Google Scholar 

  29. A. K. Flock, D. R. Guildenbecher, J. Chen, P. E. Sojka, and H. J. Bauer, Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops, Int. J. Multiphase Flow, 47, 37–49 (2012).

    Article  Google Scholar 

  30. J. E. Sprittles and Y. D. Shikhmurzaev, Coalescence of liquid drops: Different models versus experiment, Phys. Fluids, 24, No. 122105, 1–27 (2012).

    MATH  Google Scholar 

  31. H. Shank, Theory of Engineering Experiments [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  32. A. N. Zaidel, Elementary Estimates of Measurement Errors [in Russian], 3rd revised and supplemented edn., Nauka, Leningrad (1968).

  33. Yu. V. Polezhaev and F. B. Yurevich, Thermal Protection [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  34. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in GasDroplet Flows [in Russian], Izd. NGTU, Novosibirsk (2009).

    MATH  Google Scholar 

  35. A. G. Girin, Equations of the kinetics of droplet fragmentation in a high-speed gas flow, J. Eng. Phys. Thermophys., 84, Issue 2, 262–269 (2011).

    Article  Google Scholar 

  36. A. G. Girin, Distribution of dispersed droplets in fragmentation of the drop in a high-velocity gas flow, J. Eng. Phys. Thermophys., 84, Issue 4, 805–812 (2011).

    Article  Google Scholar 

  37. A. G. Girin, Laws governing the fragmentation of a droplet in a high-speed stream, J. Eng. Phys. Thermophys., 84, Issue 5, 1009–1015 (2011).

    Article  Google Scholar 

  38. M. N. Nikitin, Influence of directed water injection in the heat generator on the pressure of the produced vapor–gas mixture, Prom. Énerg., No. 6, 42–46 (2010).

  39. M. N. Nikitin, Use of a vapor–gas mixture in fuel burning, Prom. Énerg., No. 12, 37–42 (2010).

  40. A. V. Efi mov, A. L. Goncharenko, O. V. Kasilov, and L. V. Goncharenko, Selection of the optimum parameters of heattransfer agents in developing systems for deep utilization of the heat of gases escaping from boiler units, Énergosber., Énergetika, Énergoaudit, No. 3 (121), 2–11 (2014).

  41. V. F. Pershin, V. G. Odnol′ko, and S. V. Pershina, Recycling of Loose Materials in Barrel-Type Machines [in Russian], Mashinostroenie, Moscow (2009).

    Google Scholar 

  42. E. A. Isaev, I. E. Chernetskaya, L. N. Krakht, and V. S. Titov, Theory of Control over the Pelletizing of Loose Materials [in Russian], TNT, Staryi Oskol (2012).

    Google Scholar 

  43. B. N. Mar′in, V. A. Kim, and O. E. Sysoev, Treatment of Surfaces in Metallurgy and Machine Construction [in Russian], Dal′nauka, Vladivostok (2011).

    Google Scholar 

  44. I. D. Ibatullin, Kinetics of Fatigue Damageability and Failure of Surface Layers [in Russian], SGTU, Samara (2008).

    Google Scholar 

  45. R. Negeed El-Sayed, M. Albeirutty, and Y. Takata, Dynamic behavior of micrometric single water droplets impacting onto heated surfaces with TiO2 hydrophilic coating, Int. J. Therm. Sci., 79, 1–17 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Volkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 1, pp. 94–103, January–February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, D.V., Volkov, R.S., Kuznetsov, G.V. et al. Experimental Study of the Effects of Collision of Water Droplets in a Flow of High-Temperature Gases. J Eng Phys Thermophy 89, 100–111 (2016). https://doi.org/10.1007/s10891-016-1356-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1356-1

Keywords

Navigation