Skip to main content
Log in

Self-similar running waves in multicomponent viscous heat-conducting media

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Within the framework of one- and multivelocity models of a multicomponent medium that take into account the viscous and heat-conducting properties of a mixture, self-similar solutions of the type of running waves are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Surov, On reflection of an air shock wave from a foam layer, Teplofiz. Vysok. Temp., 38, No. 1, 101–110 (2000).

    Google Scholar 

  2. V. S. Surov, Concerning the calculation of shock-wave processes in bubble liquids, Zh. Tekh. Fiz., 68, No. 11, 12–19 (1998).

    Google Scholar 

  3. V. S. Surov, On localization of contact surfaces in multifl uid hydrodynamics, Inzh.-Fiz. Zh., 83, No. 3, 518–527 (2010).

    Google Scholar 

  4. V. S. Surov, One-velocity model of a heterogeneous medium with hyperbolic adiabatic core, Zh. Vych. Mat. Mat. Fiz., 48, No. 6, 1111–1125 (2008).

    MathSciNet  MATH  Google Scholar 

  5. J. Wackers and B. Koren, A fully conservative model for compressible two-fluid fl ow, J. Numer. Meth. Fluids, 47, 1337–1343 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Murrone and H. Guillard, A five-equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664–698 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. J. Kreeft and B. Koren, A new formulation of Kapila’s five-equation model for compressible two-fluid flow, and its numerical treatment, J. Comput. Phys., 229, 6220–6242 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Cattaneo, Sur une forme de l’equation de la chaleur elinant le paradoxe d’une propagation instantance, CR Acad. Sci., 247, 431–432 (1958).

    MathSciNet  Google Scholar 

  9. W. Dai, H. Wang, and P. M. Jordan, A mathematical model for skin burn injury induced by radiation heating, Int. J. Heat Mass Transfer, 51, 5497–5510 (2008).

    Article  MATH  Google Scholar 

  10. V. S. Surov, Hyperbolic model of a one-velocity multicomponent heat-conducting medium, Teplofiz. Vysok. Temp., 47, No. 6, 905–913 (2009).

    Google Scholar 

  11. A. A. Samarskii and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  12. A. S. Lodge, Elastic Liquids [Russian translation], Nauka, Moscow (1969).

    Google Scholar 

  13. V. S. Surov, Hyperbolic model of a multivelocity heterogeneous medium, Inzh.-Fiz. Zh., 85, No. 3, 495–502 (2012).

    Google Scholar 

  14. W. Kaminski, Hyperbolic heat conduction equation for materials with a non-homogeneous inner structure, Trans. ASME. J. Heat Transfer, 112, 555 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Surov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 3, pp. 557–566, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surov, V.S. Self-similar running waves in multicomponent viscous heat-conducting media. J Eng Phys Thermophy 86, 593–603 (2013). https://doi.org/10.1007/s10891-013-0873-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0873-4

Keywords

Navigation