Skip to main content
Log in

Electrovortex motion of a melt in dc furnaces with a bottom electrode

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The effect of the Lorenz force on the origination of the electrovortex motion of a metal melt in dc electric steel furnaces with a bottom electrode is evaluated. The motion of a metal melt is described by equations of magnetic hydrodynamics for isothermal liquid, which are solved by the finite element method. The numerical solution is compared with theoretical results and experimental data of other authors. From analysis of the results obtained, conclusions are drawn that the Lorenz force has a marked effect on the origination of the vortex motion of a melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Boyarevich, Ya. Zh. Freiberg, Ya. Zh. Shilova, and E. V. Shcherbinin, Electrovortex Flows [in Russian], Zinatne, Riga (1985).

  2. S. M. Nekhamin, A. G. Lunin, M. M. Krutyanskii, and A. K. Filippov, DC arc melting furnaces, Refractories and Industrial Ceramics, 46, No. 1, 37–39 (2005).

    Article  Google Scholar 

  3. V. I. Gubinskii, Metallurgical Furnaces, Textbook [in Russian], NMetAU, Dnepropetrovsk (2006).

    Google Scholar 

  4. V. M. Zhilin, Yu. P. Ivochkin, A. A. Oksman, I. O. Teplyakov, and S. N. Vavilov, Investigation of thermal and hydrodynamic effects accompanying the spreading of electric current in the bulk of a liquid metal, VI Minsk Int. Heat and Mass Transfer Forum–MIF-2008, Minsk, May 19–23, 2008, A.V. Luikov Heat and Mass Transfer Institute, CD - presentation. Section 9, Paper 9–16.

  5. I. M. Yachikov, O. I. Karandaeva, and T. P. Larina, Modeling Electrovortex Flows in a DC Electric Arc Furnace Bath, Monograph [in Russian], GOU VPO “MGTU,” Magnitogorsk (2008).

  6. B. Henning, M. Shapiro, and L. A. le Grange, DC furnace containment vessel design using computational fluid dynamics, in: Proc. 10th Int. Congress on Ferroalloys (INFACON X) “Transformation through Technology,” 1–4 February, 2004, Cape Town, South Africa (2004), pp. 565–574.

  7. F. Wang, Z. Jin, and Z. Zhu, Numerical study of dc arc plasma and molten bath in dc electric arc furnace, Ironmaking and Steelmaking, 33, No 1, 39–44 (2006).

    Article  Google Scholar 

  8. M. Ushio, J. Szekely, and C. W. Chang, Mathematical modelling of flow field and heat transfer in high-current arc discharge, Ironmaking Steelmaking, No. 6, 279–286 (1981).

    Google Scholar 

  9. J. Szekely, J. McKelliget, and M. Choudhary, Heat-transfer fluid flow and bath circulation in electric arc furnaces and dc plasma-furnaces, Ironmaking Steelmaking, 10, No. 4, 169–179 (1983).

    Google Scholar 

  10. J. Alexis, M. Ramirez, G. Trapaga, and P. Jonsson, Modeling of heat transfer from an electric arc — a simulation of heating, Pt. I, in: Proc. Electric Furnace Conf., 279–287 (1999).

  11. J. Alexis, M. Ramirez, G. Trapaga, and P. Jonsson, Modeling of a DC electric arc furnace — heat transfer from the arc, ISIJ Int., 40, No. 11, 1089–1097 (2000).

    Article  Google Scholar 

  12. M. Ramirez, G. Trapaga, J. Alexis, and P. Jonsson, Effects of the arc, slag and bottom bubbling of argon on the fluid flow and heat transfer of a dc EAF bath, Pt. II, in: Proc. Electric Furnace Conf., 751–761 (1999).

  13. M. Ramirez, G. Trapaga, and J. McKelliget, Fluid flow and heat transfer in steel or steel/slag baths of a DC electric arc furnace under the influence of the arc and gas injection, in: Proc. Brimacombe Memorial Symp., 4 October, 2000, Vancouver, British Columbia, Canada (2000), pp. 14–18.

  14. V. S. Malinovskii, I. B. Vlasova, V. D. Malinovskii, Technical economic results of introducing dc arc furnaces of new generation to industry, Chern. Metallurg., No. 2, 26–40 (2010).

    Google Scholar 

  15. V. S. Malinovskii, New generation DC arc furnaces (DCAFNG) in steel making, in: Proc. 6th Congress of Steelmakers, 213–220 (2001).

  16. A. G. Matyas, R. C. Francki, K. M. Donaldson, and B. Wasmund, Application of new technology in the design of high-power electric smelting furnaces, Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver, 36, No. 972, 92–99 (2010).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 8, Electrodynamics of Continua [in Russian], Fizmatlit, Moscow (2001).

  18. I. L. Povkh, A. B. Kapusta, and B. V. Chekin, Magnetic Hydrodynamics in Metallurgy [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  19. ANSYS Advanced Analysis Techniques Guide ANSYS Release 10.0. U.S.A. Canonsburg, August (2005).

  20. V. S. Ryaben’kii, S. V. Tsynkov, and V. I. Turchaninov, Global discrete artificial boundary conditions for timedependent wave propagation, J. Comput. Phys., No. 174, 712–758 (2002).

    Google Scholar 

  21. O. V. Kazak and A. N. Semko, Vortex motion of a melt in steel furnaces, Int. Sci. Conf. “Condensed State Physics” (CSF-XVII), Grodno, Belarus, April 21–23, 2010, pp. 39–42.

  22. D. Trif and T. Petrila, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer Science Business Media Inc, Boston (2005).

    MATH  Google Scholar 

  23. I. K. Kikoin (Ed.), Tables of Phyical Quantities, Handbook [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kazak.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 1, pp. 209–217, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazak, O.V., Semko, A.N. Electrovortex motion of a melt in dc furnaces with a bottom electrode. J Eng Phys Thermophy 84, 223–231 (2011). https://doi.org/10.1007/s10891-011-0464-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0464-1

Keywords

Navigation