Skip to main content
Log in

Analysis of free vibrations for Rayleigh — Lamb waves in a microstretch thermoelastic plate with two relaxation times

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The propagation of free vibrations in a microstretch thermoelastic homogeneous isotropic plate subjected to stress-free thermally insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT) and Green and Lindsay (G—L) theories of thermoelasticity. The secular equations for the microstretch thermoelastic plate in closed form for symmetric and skew-symmetric wave mode propagation in completely separate terms are derived. At short wavelength limits, the secular equations for both modes in a stress-free thermally insulated and isothermal homogeneous isotropic microstretch thermoelastic plate reduce to the Rayleigh surface wave frequency equation. The results for symmetric and skew-symmetric wave modes are computed numerically and presented graphically. The theory and numerical computations are found to be in close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple microelastic solids — I, Int. J. Engng. Sci., 2, 189–203 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. S. Suhubi and A. C. Eringen, Nonlinear theory of simple microelastic solids - II, Int. J. Engng. Sci., 2, 389–404 (1964).

    Article  MathSciNet  Google Scholar 

  3. A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., 15, 909–923 (1966).

    MATH  MathSciNet  Google Scholar 

  4. A. C. Eringen, Theory of thermo-microstretch elastic solids, Int. J. Eng. Sci., 28, 1291–1301 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51, 705–729 (1998).

    Article  Google Scholar 

  6. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  7. I. M. Muller, The coldness, a universal function in thermoelastic bodies, Arch. Rational Mech. Anal., 41, 319–332 (1971).

    Article  MathSciNet  Google Scholar 

  8. A. E. Green and N. Laws. On the entropy production inequality, Arch. Rational Mech. Anal., 45, 47–53 (1972).

    Article  MathSciNet  Google Scholar 

  9. A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, 2, 1–7 (1972).

    Article  MATH  Google Scholar 

  10. E. S. Suhubi, in: A. C. Eringen (ed.), Thermoelastic Solids in Continuum Physics, Vol. II, New York, Academic Press (1975), Part II, Chapter II.

    Google Scholar 

  11. R. Kumar and Baljeet Singh, Wave propagation in a generalized thermo-microstretch elastic solid, Int. J. Eng. Sci., 36, 891–912 (1998).

    Article  MathSciNet  Google Scholar 

  12. R. Kumar and Sunita Deswal, Wave propagation through cylindrical bore contained in a microstretch elastic medium, J. Sound Vibration, 250, 711–722 (2002).

    Article  Google Scholar 

  13. S. De Cicco, Stress concentration effects in microstretch elastic solids, Int. J. Eng. Sci., 41, 187–199 (2003).

    Article  Google Scholar 

  14. Xiaonong Liu and Gengkai Hu, Inclusion problem of microstretch continuum, Int. J. Eng. Sci., 42, 849–860 (2004).

    Article  Google Scholar 

  15. M. Svanadze, Fundamental solution of the system of equations of steady oscillations in the theory of microstretch elastic solids, Int. J. Eng. Sci., 42, 1897–1910 (2004).

    Article  MathSciNet  Google Scholar 

  16. R. Kumar and Geeta Partap, Reflection of plane waves in a heat flux-dependent microstretch thermoelastic solid half-space, Int. J. Appl. Mech. Eng., 10, No. 2, 253–266 (2005).

    Google Scholar 

  17. A. C. Eringen, Microcontinuum Field Theories. Foundations and Solids I, New York, Springer-Verlag (1999).

    Google Scholar 

  18. H. Lamb, On waves in an elastic plate, Philos. Trans. Roy. Soc., Ser. A, 93, 114–128 (1917).

    Google Scholar 

  19. K. F. Graff, Wave Motion in Elastic Solids, New York, Dover Publications, Inc. (1991).

    Google Scholar 

  20. A. C. Eringen, Plane waves in non-local micropolar elasticity, Int. J. Eng. Sci., 22, 1113–1121 (1984).

    Article  MATH  Google Scholar 

  21. R. S. Dhaliwal and A. Singh, Dynamic Coupled Thermoelasticity, New Delhi, India, Hindustan Publication Corporation (1980).

    Google Scholar 

  22. R. Kumar and S. Deswal, Disturbance due to mechanical and thermal sources in a generalized thermo-microstretch elastic half-space, Sadhana, 26, 529–547 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Kumar.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 1, pp. 36–46, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Partap, G. Analysis of free vibrations for Rayleigh — Lamb waves in a microstretch thermoelastic plate with two relaxation times. J Eng Phys Thermophy 82, 35–46 (2009). https://doi.org/10.1007/s10891-009-0170-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0170-4

Keywords

Navigation