Skip to main content
Log in

Response of Wild Spotted Wing Drosophila (Drosophila suzukii) to Microbial Volatiles

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The olfactory cues used by various animals to detect and identify food items often include volatile organic compounds (VOCs) produced by food-associated microorganisms. Microbial VOCs have potential as lures to trap animal pests, including insect crop pests. This study investigated microorganisms whose VOCs are attractive to natural populations of the spotted wing drosophila (SWD), an invasive insect pest of ripening fruits. The microorganisms readily cultured from wild SWD and SWD-infested fruits included yeasts, especially Hanseniaspora species, and various bacteria, including Proteobacteria (especially Acetobacteraceae and Enterobacteriaceae) and Actinobacteria. Traps in a raspberry planting that were baited with cultures of Hanseniaspora uvarum, H. opuntiae and the commercial lure Scentry trapped relatively high numbers of both SWD and non-target drosophilids. The VOCs associated with these baits were dominated by ethyl acetate and, for yeasts, other esters. By contrast, Gluconobacter species (Acetobacteraceae), whose VOCs were dominated by acetic acid and acetoin and lacked detectable ethyl acetate, trapped 60–75% fewer SWD but with very high selectivity for SWD. VOCs of two other taxa tested, the yeast Pichia sp. and Curtobacterium sp. (Actinobacteria), trapped very few SWD or other insects. Our demonstration of among-microbial variation in VOCs and their attractiveness to SWD and non-pest insects under field conditions provides the basis for improved design of lures for SWD management. Further research is required to establish how different microbial VOC profiles may function as reliable cues of habitat suitability for fly feeding and oviposition, and how this variation maps onto among-insect species differences in habitat preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Google Scholar 

  • Arguello JR, Sellanes C, Lou YR, Raguso RA (2013) Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling? PLoS One 8:e70219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD et al (2015) Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. Pest Manag Sci 88:469–494

    Google Scholar 

  • Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc Biol Sci 281:20132840

    PubMed  PubMed Central  Google Scholar 

  • Basoalto E, Hilton R, Knight A (2013) Factors affecting the efficacy of a vinegar grap for Drosophila suzukii. J Appl Entomol 137:561–570

    Google Scholar 

  • Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Google Scholar 

  • Beck JJ, Vannette RL (2017) Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J Agric Food Chem 65:23–28

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc B 57:289–300

    Google Scholar 

  • Bing X, Gerlach J, Loeb G, Buchon N (2018) Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio 9:02199–02117

    Google Scholar 

  • Bost A, Franzenburg S, Adair KL, Martinson VG, Loeb G, Douglas AE (2018) How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota. Mol Ecol 27:1848–1859

    CAS  PubMed  Google Scholar 

  • Cha DH, Adams T, Rogg H, Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing Drosophila, Drosophila suzukii. J Chem Ecol 38:1419–1431

    CAS  PubMed  Google Scholar 

  • Cha DH, Adams T, Werle CT, Sampson BJ, Adamczyk JJ, Rogg H, Landolt PJ (2014) A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag Sci 70:324–331

    CAS  PubMed  Google Scholar 

  • Cha DH, Loeb GM, Linn CE, Hesler SP, Landolt PJ (2018) A multiple-choice bioassay approach for rapid screening of key attractant volatiles. Environ Entomol 47:946–960

    CAS  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. In: PRIMER-e. https://www.primer-e.com/

  • Cloonan KR, Abraham J, Angeli S, Syed A, Rodriguez-Saona C (2018) Advances in the chemical ecology of the spotted wing Drosophila (Drosophila suzukii) and its applications. J Chem Ecol 44:922–939

    CAS  PubMed  Google Scholar 

  • Cribari-Neto F, Zeileis A (2010) Beta Regression in R. J of Stat Softw 34(2):1–24 http://www.jstatsoft.org/v34/i02/

    Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    CAS  PubMed  Google Scholar 

  • Dominy NJ (2004) Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr Comp Biol 44:295–303

    PubMed  Google Scholar 

  • Douglas AE (2018) What will it take to understand the ecology of symbiotic microorganisms. Env Microbiol 20:1920–1924

    Google Scholar 

  • Dudley R (2000) Evolutionary origins of human alcoholism in primate frugivory. Q Rev Biol 75:3–15

    CAS  PubMed  Google Scholar 

  • Feng Y, Bruton R, Park A, Zhang A (2018) Identification of attractive blend for spotted wing Drosophila, Drosophila suzukii, from apple juice. J Pest Sci 91:1251–1267

    Google Scholar 

  • Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol 64:3599–3606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamby KA, Hernandez A, Boundy-Mills K, Zalom FG (2012) Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl Environ Microbiol 78:4869–4873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias LE, Nyoike TW, Liburd OE (2014) Effect of trap design, bait type, and age on captures of Drosophila suzukii (Diptera: Drosophilidae) in berry crops. J Econ Entomol 107:1508–1518

    PubMed  Google Scholar 

  • Janzen DH (1977) Why fruits rot, seed mold, and meat spoils. Am Nat 111:691–713

    CAS  Google Scholar 

  • Keesey IW, Knaden M, Hansson BS (2015) Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J Chem Ecol 41:121–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keesey IW, Grabe V, Gruber L, Koerte S, Obiero GF, Bolton G, Khallaf MA, Kunert G, Lavista-Llanos S, Valenzano DR et al (2019) Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat Commun 10:1162

    PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick DM, McGhee PS, Hermann SL, Gut LJ, Miller JR (2016) Alightment of spotted wing Drosophila (Diptera: Drosophilidae) on odorless disks varying in color. Environ Entomol 45:185–191

    CAS  PubMed  Google Scholar 

  • Kleiber JR, Unelius CR, Lee JC, Suckling DM, Qian MC, Bruck DJ (2014) Attractiveness of fermentation and related products to spotted wing Drosophila (Diptera: drosophilidae). Environ Entomol 43:439–447

    CAS  PubMed  Google Scholar 

  • Knight AL, Basoalto E, Yee W, Hilton R, Kurtzman CP (2015) Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry. Pest Manag Sci 72:1482–1490

    PubMed  Google Scholar 

  • Liscia A, Angioni P, Sacchetti P, Poddighe S, Granchietti A, Setzu MD, Belcari A (2013) Characterization of olfactory sensilla of the olive fly: behavioral and electrophysiological responses to volatile organic compounds from the host plant and bacterial filtrate. J Insect Physiol 59:705–716

    CAS  PubMed  Google Scholar 

  • Little CM, Chapman TW, Hillier NK (2018) Effect of color and contrast on highbush blueberries to host-finding behavior by Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 47:1242–1251

    CAS  PubMed  Google Scholar 

  • MacCollum GB, Lauzon CR, Weires RW, Rutowski AA (1992) Attraction of adult apple maggot (Diptera: Tephritidae) to microbial isolates. J Econ Entomol 85:83–87

    Google Scholar 

  • Mazzetto F, Gonella E, Crotti E, Vacchini V, Syrpas M, Pontini M, Mangelinckx S, Daffonchio D, Alma A (2016) Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. J Chem Ecol 89:783–792

    Google Scholar 

  • Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH, Witzgall P, Becher PG (2017) Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J Appl Ecol 54:170–177

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, et al. (2019) Vegan: community ecology package. (R package version 2.5-4). https://CRAN.R-project.org/package=vegan

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rice KB, Short BD, Jones SK, Leskey TC (2016) Behavioral responses of Drosophila suzukii (Diptera: Drosophilidae) to visual stimuli under laboratory, semifield, andfField conditions. Environ Entomol 45:1480–1488

    PubMed  Google Scholar 

  • Rice KB, Short BD, Leskey TC (2017) Development of an attract-and-kill strategy for Drosophila suzukii (Diptera: Drosophilidae): evaluation of attracticidal spheres under laboratory and field conditions. J Econ Entomol 110:535–542

    CAS  PubMed  Google Scholar 

  • Robacker DC, Lauzon CR, He X (2004) Volatiles production and attractiveness to the Mexican fruit fly of Enterobacter agglomerans isolated from apple maggot and Mexican fruit flies. J Chem Ecol 30:1329–1347

    CAS  PubMed  Google Scholar 

  • Ruxton GD, Wilkinson DM, Schaefer HM, Sherratt TN (2014) Why fruit rots: theoretical support for Janzen's theory of microbe-macrobe competition. Proc Biol Sci 281:20133320

    PubMed  PubMed Central  Google Scholar 

  • Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z (2015) Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schetelig MF, Lee K-Z, Otto S, Talmann L, Stokl J, Degenkolb T, Vilcinskas A, Halitschke R (2017) Environmentally sustainable pest control options for Drosophila suzukii. J Appl Entomol 142:3–17

    Google Scholar 

  • Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    CAS  PubMed  Google Scholar 

  • Swoboda-Bhattarai KA, McPhie DR, Burrack HJ (2017) Reproductive status of Drosophila suzukii (Diptera: Drosophilidae) females influences attraction to fermentation-based baits and ripe fruits. J Econ Entomol 110:1648–1652

    PubMed  Google Scholar 

  • Tasin M, Knudsen GK, Pertot I (2012) Smelling a diseased host: grapevine moth responses to healthy and fungus-infected grapes. Anim Behav 83:552–562

    Google Scholar 

  • Verheggen F, Perrault KA, Megido RC, Dubois LM, Fancis F, Haubruge E, Forbes SL, Focant J-F, Stefanuto P-H (2017) The odor of death: an overview of current knowledge on characterization and applications. BioScience 67:600–613

    Google Scholar 

  • Werner T, Steenwinkel T, Jaenike J (2018) Drosophilids of the Midwest and northeast. Open Access Books, Michigan Tech University, MI

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wiens F, Zitzmann A, Lachance MA, Yegles M, Pragst F, Wurst FM, von Holst D, Guan SL, Spanagel R (2008) Chronic intake of fermented floral nectar by wild treeshrews. Proc Natl Acad Sci U S A 105:10426–10431

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Alyssa Bost for help with gut dissections, Gabrielle Brind Amour who assisted with field assessment, Francoise Vermeylen and Dong Ho Cha for statistical advice, Wendy Kozlowski for data archiving at eCommons, and Dara Stockton who prepared Fig. 1. This research was funded by NIFA grant NYC-191404.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by AED, GML and RAR. The microbiology was conducted EB and JGM, the field experiments by SH and GML, and the VOC analysis by KRM and RAR. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Angela E. Douglas.

Electronic supplementary material

ESM 1

(XLSX 22 kb)

ESM 2

(XLS 39 kb)

ESM 3

(DOCX 40 kb)

ESM 4

(XLS 58 kb)

ESM 5

(XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, E., Martin, K.R., Raguso, R.A. et al. Response of Wild Spotted Wing Drosophila (Drosophila suzukii) to Microbial Volatiles. J Chem Ecol 46, 688–698 (2020). https://doi.org/10.1007/s10886-019-01139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-019-01139-4

Keywords

Navigation