Skip to main content
Log in

Naphthoquinone Metabolites Produced by Monacrosporium ambrosium, the Ectosymbiotic Fungus of Tea Shot-Hole Borer, Euwallacea fornicatus, in Stems of Tea, Camellia sinensis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The tea shot-hole borer beetle (TSHB, Euwallacea fornicatus) causes serious damage in plantations of tea, Camellia sinensis var. assamica, in Sri Lanka and South India. TSHB is found in symbiotic association with the ambrosia fungus, Monacrosporium ambrosium (syn. Fusarium ambrosium), in galleries located within stems of tea bushes. M. ambrosium is known to be the sole food source of TSHB. Six naphthoquinones produced during spore germination in a laboratory culture broth of M. ambrosium were isolated and identified as dihydroanhydrojavanicin, anhydrojavanicin, javanicin, 5,8-dihydroxy-2-methyl-3-(2-oxopropyl)naphthalene-1,4-dione, anhydrofusarubin and solaniol. Chloroform extracts of tea stems with red-colored galleries occupied by TSHB contained UV active compounds similar to the above naphthoquinones. Laboratory assays demonstrated that the combined ethyl acetate extracts of the fungal culture broth and mycelium inhibited the growth of endophytic fungi Pestalotiopsis camelliae and Phoma multirostrata, which were also isolated from tea stems. Thus, pigmented naphthoquinones secreted by M. ambrosium during spore germination may prevent other fungi from invading TSHB galleries in tea stems. The antifungal nature of the naphthoquinone extract suggests that it protects the habitat of TSHB. We propose that the TSHB fungal ectosymbiont M. ambrosium provides not only the food and sterol skeleton necessary for the development of the beetle during its larval stages, but also serves as a producer of fungal inhibitors that help to preserve the purity of the fungal garden of TSHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother Suppl S1 48:5–16

    Article  CAS  Google Scholar 

  • Batra LR (1985) Ambrosia beetles and their associated fungi: research trends and techniques. Proc Indian Acad Sci (Plant Sci) 94:137–148

    Google Scholar 

  • Bergeron D, Caron B, Brassard P (1993) An expeditious synthesis of javanicin. J Organomet Chem 58:509–511

    Article  CAS  Google Scholar 

  • Cranham JE (1966) Monograph on tea production in Ceylon, No. 6: insect and mite pests of tea in Ceylon and their control. The Tea Research Institute of Ceylon, Talawakelle, Sri Lanka

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus–growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Danthanarayana W (1968) The distribution and host-range of the shot-hole borer (Xyleborus fornicatus Eichh) of tea. Tea Q 39:61–69

    Google Scholar 

  • De Paiva SR, Lima LA, Figueiredo MR, Kaplan MAC (2004) Plumbagin quantification in roots of Plumbago scandens L. obtained by different extraction techniques. An Acad Bras Cienc 76:499–504

    Article  PubMed  Google Scholar 

  • Eilenberg H, Pnini-Cohen S, Rahamim Y, Sionov E, Segal E, Carmeli S, Zilberstein A (2010) Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 61:911–922

    Article  CAS  PubMed  Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027

    Article  CAS  PubMed  Google Scholar 

  • Fernando EFW (1959) Storage and transmission of ambrosia fungus in adult Xyleborus fornicatus Eich. (Coleoptera: Scolytidae). Ann Mag Nat Hist Series 2:475–480

    Article  Google Scholar 

  • Freeman S, Sharon M, Dori-Bachash M, Maymon M, Belausov E, Maoz Y, Margalit O, Protasov A, Mendel Z (2016) Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis 68:115–128

    Article  Google Scholar 

  • Gadd CH (1947) Observations on the life cycle of Xyleborus fornicatus Eichoff. In artificial culture. Ann Appl Biol 34:197–206

    Article  Google Scholar 

  • Gadd CH, Loos CA (1947) The ambrosia fungus of Xyleborus fornicatus Eich. Trans Br Mycol Soc 31:13–18

    Article  Google Scholar 

  • Hewavitharanage P, Karunaratne S, Kumar NS (1999) Effect of caffeine on shot-hole borer beetle (Xyleborus fornicatus) of tea (Camellia sinensis). Phytochemistry 51:35–41

    Article  CAS  Google Scholar 

  • Homans AL, Fuchs A (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr A 51:327–329

    Article  CAS  Google Scholar 

  • Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infections. BMC Ecol 11:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaokhajorn P, Samipak S, Nithithanasilp S, Tanticharoen M, Amnuaykanjanasin A (2015) Production and secretion of naphthoquinones is mediated by the MFS transporter MFS1 in the entomopathogenic fungus Ophiocordyceps sp. BCC 1869. World J Microbiol Biotechnol 31:1543–1544

    Article  CAS  PubMed  Google Scholar 

  • Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthoquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Shimada A, Nakajima H, Hamasaki T (1988) Structures of naphthoquinones produced by the fungus, Fusarium sp., and their biological activity. Agric Biol Chem 52:1253–1259

    CAS  Google Scholar 

  • King CBR (1940) Notes on the shot-hole borer of tea. Tea Q 13:111–116

    Google Scholar 

  • Kittakoop P, Punya J, Kongsaeree P, Lertwerawat Y, Jintasirikul A, Tanticharoen M, Thebtaranonth Y (1999) Bioactive naphthoquinones from Cordyceps unitaeralis. Phytochemistry 52:453–457

    Article  CAS  Google Scholar 

  • Kurobane I, Zaita N, Fukuda A (1986) New metabolites of Fusarium martii related to dihydrofusarubin. J Antibiot 39:205–214

    Article  CAS  PubMed  Google Scholar 

  • Larran S, Perello A, Simon MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.) World J Microbiol Biotechnol 23:565–572

    Article  Google Scholar 

  • Macias-Rubalcava ML, Hernandez-Bautista BE, Jimenez-Estrada M, Gonzalez MC, Glenn AE, Hanlin RT, Hernandez-Ortega S, Saucedo-Garcia A, Muria-Gonzalez JM, Anaya AL (2008) Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry 69:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959

    Article  CAS  PubMed  Google Scholar 

  • Mendel Z, Protasov A, Sharon M, Zveibil A, Yehuda SB, O’Donnell K, Rabaglia R, Wysoki M, Freeman S (2012) An Asian ambrosia beetle, Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40:235–238

    Article  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  • Nirenberg HI (1990) Recent advances in the taxonomy of Fusarium. Stud Mycol 32:91–101

    Google Scholar 

  • Pryce TM, Palladino S, Kay ID, Coombs GW (2003) Rapid identification of fungi by sequencing the ITS l and ITS 2 regions using an automated capillary electrophoresis system. Med Mycol 41:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadhar TR, Beemelmanns C, Currie CR, Clardy J (2014) Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. J Antibiot 67:53–58

    Article  CAS  PubMed  Google Scholar 

  • Speyer (1922) Shot-hole borer of tea: damage caused to the tea bush Dep Agric Ceylon Bull No 80

  • Stodulkova E, Cisarova I, Kolarik M, Chudickova M, Novak P, Man P, Kuzma M, Pavlu B, Cerny J, Flieger M (2015) Biologically active metabolites produced by the basidiomycete Quambalaria cyanescens. PLoS One 10(2):e0118913. https://doi.org/10.1371/journal.pone.0118913

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Nishida N, Ishihara A, Nakjima H (2013) New 3-O-alkyl-4a,10a-dihydrofusarubins produced by Fusarium sp. Mj-2. Biosci Biotechnol Biochem 77:271–275

    Article  CAS  PubMed  Google Scholar 

  • Tatum JH, Baker RA (1983) Naphthoquinones produced by Fusarium solani isolated from citrus. Phytochemistry 22:543–547

    Article  CAS  Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1987) Naphthoquinones and derivatives from Fusarium. Phytochemistry 26:795–798

    Article  CAS  Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1989) Metabolites of Fusarium solani. Phytochemistry 28:283–284

    Article  CAS  Google Scholar 

  • Trisuwan K, Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2010) Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J Nat Prod 73:1507–1511

    Article  CAS  PubMed  Google Scholar 

  • Trisuwan K, Rukachaisirikul V, Borwornwiriyapan K, Phongpaichit S, Sakayaroj J (2013) Pyrone derivatives from the soil fungus Fusarium solani PSU-RSPG37. Phytochem Lett 6:495–497

    Article  CAS  Google Scholar 

  • Verrall AF (1943) Fungi associated with certain ambrosia beetles. J Agric Res 66:135–144

    Google Scholar 

  • Yang Z, Ding J, Ding K, Chen D, Cen S, Ge M (2013) Phomonaphthalenone a: a novel dihydronaphthalenone with anti-HIV activity from Phomopsis sp. HCCB04730. Phytochem Lett 6:257–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Satsuki Itoh, Tokyo Institute of Technology, for the FABMS measurements. The cooperation and support of Dr. Sarath Abeysinghe, Director, Tea Research Institute of Sri Lanka is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Savitri Kumar or Lalith Jayasinghe.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kehelpannala, C., Kumar, N.S., Jayasinghe, L. et al. Naphthoquinone Metabolites Produced by Monacrosporium ambrosium, the Ectosymbiotic Fungus of Tea Shot-Hole Borer, Euwallacea fornicatus, in Stems of Tea, Camellia sinensis. J Chem Ecol 44, 95–101 (2018). https://doi.org/10.1007/s10886-017-0913-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0913-1

Keywords

Navigation