Skip to main content
Log in

The Role of Leaf Volatiles of Ludwigia octovalvis (Jacq.) Raven in the Attraction of Altica cyanea (Weber) (Coleoptera: Chrysomelidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z–Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z–penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikary P, Mukherjee A, Barik A (2015) Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bull Entomol Res 105:187–201

    Article  CAS  PubMed  Google Scholar 

  • Alam S, Karim ANMR (1980) The black beetle: an efficient weed feeder in Bangladesh. Intl Rice Res Newsletter 5:23

    Google Scholar 

  • Azad MWA, Naeem M, Bodlah I, Mohsin AU (2015) New locality records of Chrysomelidae (Coleoptera) from Pothowar tract of the Punjab. Asian J Agri Biol 3:41–45

    Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects − finding the right mix. Phytochemistry 72:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Cardoso CAL, da Rocha CG, Caramão EB (2013) Volatile compounds and free radical scavenging activity of leaf and flower oil of Ludwigia lagunae (Onagraceae). J Essent Oil Bear Plants 16:323–327

    Article  CAS  Google Scholar 

  • Carruthers RI, Franc MK, Gee WS, Cossé AA, Grewell BJ, Beck JJ (2011) Volatile emissions from the flea beetle Altica litigata (Coleoptera: Chrysomelidae) associated with invasive Ludwigia hexapetala. Chemoecology 21:253–259

    Article  CAS  Google Scholar 

  • Caton BP, Mortimer M, Hill JE, Johnson DE (2010) A practical field guide to weeds of rice in Asia, 2nd edn. Los Baños (Philippines), International Rice Research Institute

    Google Scholar 

  • Chauhan BS, Abugho SB (2012) Phenotypic plasticity of spiny amaranth (Amaranthus spinosus) and Longfruited primrose-willow (Ludwigia octovalvis) in response to rice interference. Weed Sci 60:411–415

    Article  Google Scholar 

  • Chin DV, Thien TC, Bi HH, Nhiem NT (2007) Study on weed and weedy rice control by imidazolinone herbicides in CLEARFIELD™ paddy grown by imi-tolerance indica rice variety. Omonrice 15:63–67

    Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets U (2011) Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol 37:18–28

    Article  CAS  PubMed  Google Scholar 

  • Couton L, Minoli S, Kiêu K, Anton S, Rospars JP (2009) Constancy and variability of identified glomeruli in antennal lobes: computational approach in Spodoptera littoralis. Cell Tissue Res 337:491–511

    Article  PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161–172

    Article  CAS  Google Scholar 

  • Dubey AN (1981) Biological control of weeds in rice fields. Trop Pest Manage 27:143–144

    Article  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Galizia CG, Rossler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420

    Article  CAS  PubMed  Google Scholar 

  • Giorgi A, Manzo A, Nanayakkara NNMC, Giupponi L, Cocucci M, Panseri S (2015) Effect of biotic and abiotic stresses on volatile emission of Achillea collina Becker ex Rchb. Nat Prod Res 29:1695–1702

    Article  CAS  PubMed  Google Scholar 

  • Gouinguené S, Alborn H, Turlings TCJ (2003) Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J Chem Ecol 29:145–162

    Article  PubMed  Google Scholar 

  • Imeokparia PO (1994) Weed control in flooded rice with various herbicide combinations in the southern Guinea savanna zone of Nigeria. Int J Pest Manage 40:31–39

    Article  CAS  Google Scholar 

  • Imeokparia PO, Lagoke STO, Olunuga BA (1992) Evaluation of postemergence herbicides for broad-spectrum weed control in three cultivars of flooded rice in Nigeria. Crop Protect 11:165–173

    Article  CAS  Google Scholar 

  • Kandasamy OS, Palaniappan SP (1990) Weed control in dry and wet seeded irrigated rice. Intl Rice Res Newsletter 15:33

    Google Scholar 

  • Karmakar A, Mukherjee A, Barik A (2016) Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of Aulacophora foveicollis. Entomol Exp Appl 158:133–141

    Article  CAS  Google Scholar 

  • Kessler A (2015) The information landscape of plant constitutive and induced secondary metabolite production. Curr Opin Insect Sci 8:47–53

    Article  Google Scholar 

  • Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Weisser WW (2009) Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J Chem Ecol 35:1335–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Oxford

    Google Scholar 

  • Magalhães DM, Borges M, Laumann RA, Sujii ER, Mayon P, Caulfield JC, Midega CAO, Khan ZR, Pickett JA, Birkett MA, Blassioli-Moraes MC (2012) Semiochemicals from herbivory induced cotton plants enhance the foraging behaviour of the cotton boll weevil, Anthonomus grandis. J Chem Ecol 38:1528–1538

    Article  PubMed  Google Scholar 

  • Malik U, Karmakar A, Barik A (2016) Attraction of the potential biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae) to the volatiles of Polygonum orientale (Polygonaceae) weed leaves. Chemoecology 26:45–58

    Article  CAS  Google Scholar 

  • Mamun AAM (2014) Modelling rice-weed competition in direct-seeded rice cultivation. Agric Res 3:346–352

    Article  Google Scholar 

  • Maulik S (1936) The Fauna of British India, including Ceylon and Burma. Coleoptera. Chrysomelidae (Galerucinae). Taylor and Francis, London

  • Mesquita MLR, de Andrade LA, Pereira WE (2013) Floristic diversity of the soil weed seed bank in a rice-growing area of Brazil: in situ and ex situ evaluation. Acta Bot Bras 27:465–471

    Article  Google Scholar 

  • Moody K (1989) Weeds reported in Rice in south and Southeast Asia. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Mukherjee A, Sarkar N, Barik A (2015) Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: Semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25:93–104

    Article  CAS  Google Scholar 

  • Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S (2010) Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J Exp Biol 213:3388–3397

    Article  CAS  PubMed  Google Scholar 

  • Naples ML, Kessler PJA (2005) Weeds of rain fed lowland rice fields of Laos & Cambodia. Description, illustrations, identification, and information retrieval. Version: 12 September 2005. Available from: http://www.nationaalherbarium.nl

  • Nayek TK, Banerjee TC (1987) Life history and host specificity of Altica cyanea (Coleoptera: Chrysomelidae), a potential biocontrol agent for water primrose, Ludwigia adscendens. Entomophaga 32:407–414

    Article  Google Scholar 

  • Niederbacher B, Winkler JB, Schnitzler JP (2015) Volatile organic compounds as non-invasive markers for plant phenotyping. J Exp Bot 66:5403–5416

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci 4:262. doi:10.3389/fpls.2013.00262

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada K, Abe H, Arimura G (2015) Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol 56:16–27

    Article  CAS  PubMed  Google Scholar 

  • Padmaja PG, Woodcock CM, Bruce TJA (2010) Electrophysiological and behavioural responses of sorghum shoot fly, Atherigona soccata, to sorghum volatiles. J Chem Ecol 36:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Padovan A, Keszei A, Köllner TG, Degenhardt J, Foley WJ (2010) The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. Phytochemistry 71:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Pańka D, Delaney KJ, Skoczek A, Lamparski R, Weaver DK (2011) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.) J Plant Physiol 168:878–886

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Rochat D, Delaney KJ, Marion-Poll F (2013a) Orientation of European corn borer first instar larvae to synthetic green leaf volatiles. J Appl Entomol 137:234–240

    Article  CAS  Google Scholar 

  • Piesik D, Pańka D, Jeske M, Wenda-Piesik A, Delaney KJ, Weaver DK (2013b) Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore. J Appl Entomol 137:296–309

    Article  CAS  Google Scholar 

  • Piesik D, Wenda-Piesik A, Ligor M, Buszewski B, Delaney KJ (2012) Dock leaf beetle, Gastrophysa viridula Deg., herbivory on the mossy sorrel, Rumex confertus Willd: induced plant volatiles and beetle orientation responses. J Agric Sci 4:97–103

    Google Scholar 

  • Piesik D, Wenda-Piesik A, Lamparski R, Tabaka P, Ligor T, Buszewski B (2010) Effects of mechanical injury and insect feeding on volatiles emitted by wheat plants. Entomol Fenn 21:117–128

    Google Scholar 

  • Raju RA, Reddy MN (1986) Protecting the world's rice crops. Agric Inform Develop Bull 8:17–18

    Google Scholar 

  • Renou M (2014) Pheromones and general odor perception in insects. In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press, Boca Raton, pp 23–56

    Chapter  Google Scholar 

  • Sarkar N, Karmakar A, Barik A (2016) Volatiles of Solena amplexicaulis (lam.) Gandhi leaves influencing attraction of two generalist insect herbivores. J Chem Ecol 42:1004–1015

    Article  CAS  PubMed  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Smith L, Beck JJ (2013) Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds. Biocontrol Sci Tech 23:880–907

    Article  Google Scholar 

  • Tasin M, Backman AC, Coracini M, Casado D, Ioriatti C, Witzgall P (2007) Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209

    Article  CAS  PubMed  Google Scholar 

  • Truong D, Delory BM, Vanderplanck M, Brostaux Y, Vandereycken A, Heuskin S, Delaplace P, Francis F, Lognay G (2014) Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis. Arhropod-Plant Interact 8:317–327

    Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler GS, Schaffner U (2013) Improved understanding of weed biological control safety and impact with chemical ecology: a review. Invas Plant Sci Manage 6:16–29

    Article  CAS  Google Scholar 

  • Xiao Y, Wang Q, Erb M, Turlings TC, Ge L, Hu L, Li J, Han X, Zhang T, Lu J, Zhang G, Lou Y (2012) Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett 15:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Xiao-Shui W (1990) Altica cyanea (Col: Chrysomelidae) for the biological control of Ludwigia prostrata (Onagraceae) in China. Trop Pest Manage 36:368–370

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Wittko Francke and anonymous reviewers for many helpful comments of an earlier version of the manuscript. Financial support by the University Grants Commission, New Delhi, India [F. No. – 43-578/2014(SR)] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandamay Barik.

Electronic supplementary material

ESM 1

(DOCX 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Karmakar, A., Mukherjee, A. et al. The Role of Leaf Volatiles of Ludwigia octovalvis (Jacq.) Raven in the Attraction of Altica cyanea (Weber) (Coleoptera: Chrysomelidae). J Chem Ecol 43, 679–692 (2017). https://doi.org/10.1007/s10886-017-0866-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0866-4

Keywords

Navigation