Skip to main content
Log in

RNAi-Induced Electrophysiological and Behavioral Changes Reveal two Pheromone Binding Proteins of Helicoverpa armigera Involved in the Perception of the Main Sex Pheromone Component Z11–16:Ald

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pheromone binding proteins (PBPs) are thought to play key roles in insect sex pheromone recognition; however, there is little in vivo evidence to support this viewpoint in comparison to abundant biochemical data in vitro. In the present study, two noctuid PBP genes HarmPBP1 and HarmPBP2 of the serious agricultural pest, Helicoverpa armigera were selected to be knocked down by RNA interference, and then the changes in electrophysiological and behavioral responses of male mutants to their major sex pheromone component (Z)-11-hexadecenal (Z11–16:Ald) were recorded. There were no significant electrophysiological or behavioral changes of tested male moths in response to Z11–16:Ald when either single PBP gene was knocked down. However, decreased sensitivity of male moths in response to Z11–16:Ald was observed when both HarmPBP1 and HarmPBP2 genes were silenced. These results reveal that both HarmPBP1 and HarmPBP2 are required for the recognition of the main sex pheromone component Z11–16:Ald in H. armigera. Furthermore, these findings may help clarify physiological roles of moth PBPs in the sex pheromone recognition pathway, which in turn could facilitate pest control by exploring sex pheromone blocking agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M (2001) Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 276:20078–20084

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Liu Y, Yang T, Pelosi P, Dong S, Wang G (2015) Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep 5:13093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santis F, Francois MC, Merlin C, Pelletier J, Maibeche-Coisne M, Conti E, Jacquin-Joly E (2006) Molecular cloning and in situ expression patterns of two new pheromone-binding proteins from the corn stemborer Sesamia nonagrioides. J Chem Ecol 32:1703–1717

    Article  PubMed  Google Scholar 

  • Field LM, Pickett JA, Wadhams LJ (2000) Molecular studies in insect olfaction. Insect Mol Biol 9:545–551

    Article  CAS  PubMed  Google Scholar 

  • Forstner M, Gohl T, Breer H, Krieger J (2006) Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invertebr Neurosci 6:177–187

    Article  CAS  Google Scholar 

  • Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555

    Article  CAS  PubMed  Google Scholar 

  • Groβe-Wilde E, Gohl T, Bouché E, Breer H, Krieger J (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci 25:2364–2373

    Article  Google Scholar 

  • Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY (2013) Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol 43:237–251

    Article  CAS  PubMed  Google Scholar 

  • Guo YY (1997) Progress in the researches on migration regulatory of cotton bollworm and relationships between the pest and its host plants. Acta Entomol Sin 40:1–6

    Google Scholar 

  • Guo H, Huang LQ, Pelosi P, Wang CZ (2012) Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochem Mol Biol 42:708–716

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  • Jaubert-Possamai S, Le TG, Bonhomme J, Christophides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:1–8

    Article  Google Scholar 

  • Jin JY, Li ZQ, Zhang YN, Liu NY, Dong SL (2014) Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae). J Insect Physiol 66:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (1971) Handbook of sensory physiology. In: Beidler LM (ed) Insect olfaction. Springer, Berlin, pp 351–431

    Chapter  Google Scholar 

  • Kaissling KE (1986) Chemo-electrical transduction in insect olfactory receptors. Annu Rev Neurosci 9:121–145

    Article  CAS  PubMed  Google Scholar 

  • Karg G, Suckling M (1999) Applied aspects of insect olfaction. In: Hansson BS (ed) Insect olfaction. Springer, Berlin Heidelberg, Berlin, pp 351–377

    Chapter  Google Scholar 

  • Kehat M, Dunkelblum E (1990) Behavioral response of male Heliothis armigera (Lepidoptera: Noctuidae) moths in a flight tunnel to combinations of components identified from female sex pheromone glands. J Insect Behav 3:75–83

    Article  Google Scholar 

  • Kendra PE, Montgomery WS, Mateo DM, Puche H, Epsky ND, Heath RR (2005) Effect of age on EAG response and attraction of female Anastrepha suspensa (Diptera: Tephritidae) to ammonia and carbon dioxide. Environ Entomol 34:584–590

    Article  Google Scholar 

  • Laughlin JD, Ha TS, Jones DNM, Smith DP (2008) Activation of pheromone sensitive neurons is mediated by conformational activation of pheromone binding protein. Cell 133:1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Nikonova L, Peng G (1999) Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 464:85–90

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maida R, Krieger J, Gebauer T, Lange U, Ziegelberger G (2001) Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur J Biochem 267:2899–2908

    Article  Google Scholar 

  • Mohl C, Breer H, Krieger J (2002) Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invertebr Neurosci 4:165–174

    Article  CAS  Google Scholar 

  • Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS (2010) Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 36:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Zhou J, Ban L, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC (2014) Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 98:61–70

    Article  CAS  PubMed  Google Scholar 

  • Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemist 39:8953–8962

    Article  CAS  Google Scholar 

  • Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245

    Article  Google Scholar 

  • Steinbrecht RA, Ozaki M, Ziegelberger G (1992) Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res 270:287–302

    Article  CAS  Google Scholar 

  • Sun M, Liu Y, Wang G (2013a) Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella. J Insect Physiol 59:46–55

    Article  CAS  PubMed  Google Scholar 

  • Sun YL, Huang LQ, Pelosi P, Wang CZ (2013b) A lysine at the C-terminus of an odorant-binding protein is involved in binding aldehyde pheromone components in two Helicoverpa species. PLoS One 8:e55132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Xiao HJ, Gu SH, Guo YY, Liu ZW, Zhang YJ (2014) Perception of potential sex pheromones and host-associated volatiles in the cotton plant bug, Adelphocoris fasciaticollis (Hemiptera: Miridae): morphology and electrophysiology. Appl Entomol Zool 49:43–57

    Article  CAS  Google Scholar 

  • Takanashi T, Ishikawa Y, Anderson P, Huang Y, Löfstedt C, Tatsuki S, Hansson BS (2006) Unusual response characteristics of pheromone-specific olfactory receptor neurons in the Asian corn borer moth, Ostrinia furnacalis. J Exp Biol 209:4946–4956

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg MJ, Ziegelberger G (1991) On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphernus. J Insect Physiol 37:79–85

    Article  CAS  Google Scholar 

  • van der Goes van Naters W, Carlson JR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17:606–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Große-Wilde E, Zhou JJ (2015) The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol 62:142–153

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Zhao CH, Wang CZ (2005) Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid. Insect Biochem Mol Biol 35:575–583

    Article  CAS  PubMed  Google Scholar 

  • Wu DM, Yan YH, Cui JR (1997) Sex pheromone components of Helicoverpa armigera: chemical analysis and field tests. Entomol Sin 4:350–356

    Google Scholar 

  • Wu H, Hou C, Huang LQ, Yan FS, Wang CZ (2013) Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa species. PLoS One 8:e70078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DD, Löfstedt C (2015) Moth pheromone receptors: gene sequences, function, and evolution. Front Ecol Evol 3:105

    Article  Google Scholar 

  • Zhang S, Maida R, Steinbrecht RA (2001) Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chem Senses 26:885–896

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Gu S, Wu K, Zhang Y, Guo Y (2011) Construction and analysis of cDNA libraries from the antennae of male and female cotton bollworms Helicoverpa armigera (Hübner) and expression analysis of putative odorant-binding protein genes. Biochem Biophys Res Commun 407:393–399

    Article  CAS  PubMed  Google Scholar 

  • Zhang YN, Ye ZF, Yang K, Dong SL (2014) Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene 536:279–286

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Walker WB, Wang G (2015) Pheromone reception in moths: from molecules to behaviors. Prog Mol Biol Transl Sci 130:109–128

    Article  PubMed  Google Scholar 

  • Zhao XC, Yan YH, Wang CZ (2006) Behavioral and electrophysiological responses of Helicoverpa assulta, H. armigera (Lepidoptera: Noctuidae), their F1 hybrids and backcross progenies to sex pheromone component blends. Journal Comp Physiol A 192:1037–1047

    Article  CAS  Google Scholar 

  • Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National Basic Research Program (2012CB114104), the National Natural Science Foundation of China (31272048, 31471778, 31672038, and 31621064) and the Beijing Nova Program (Z1511000003150118). This manuscript has been edited by the native English-speaking experts of Elsevier Language Editing Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Zhang.

Additional information

Kun Dong and Liang Sun contributed equally to this work.

Electronic supplementary material

Fig. S1

HarmPBP3 transcripts of non-injected, water-injected, dsGFP-injected, single dsPBP-injected, and the mixture of dsPBP1 and dsPBP1-injected groups. The expression of HarmPBP3 was normalized using β-actin, and the mRNA transcript levels of HarmPBP3 were examined at 72 hr after injection. Data represents the mean values ± S.E.M of three independent replicates. Different letters within the same figure indicated that the values were significantly different (P < 0.05). (JPEG 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Sun, L., Liu, JT. et al. RNAi-Induced Electrophysiological and Behavioral Changes Reveal two Pheromone Binding Proteins of Helicoverpa armigera Involved in the Perception of the Main Sex Pheromone Component Z11–16:Ald. J Chem Ecol 43, 207–214 (2017). https://doi.org/10.1007/s10886-016-0816-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0816-6

Keywords

Navigation