Skip to main content
Log in

Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee−1, far below the LD50 of ~100 ng.bee−1. We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Naggar Y, Codling G, Vogt A, Naiem E, Mona M et al (2015) Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicol Environ Saf 114:1–8

    Article  CAS  PubMed  Google Scholar 

  • Avarguès-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370

    Article  PubMed  PubMed Central  Google Scholar 

  • Balbuena M, Tison L, Hahn M, Greggers U, Menzel R et al (2015) Effects of sub-lethal doses of glyphosate on honeybee navigation. J Exp Biol 218:2799–2805

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker, B (2012) lme4: linear mixed-effects models using S4 classes. R package version 0.999999–0

  • Blacquière T, Smagghe G, Gestel C, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992

    Article  PubMed  PubMed Central  Google Scholar 

  • Celli G, Maccagnani B (2003) Honey bees as bioindicators of environmental pollution. Bull Insect 56:137–139

    Google Scholar 

  • Cutler GC, Purdy J, Giesy JP, Solomon KR (2014) Risk to pollinators from the use of chlorpyrifos in the United States. Rev Environ Contam Toxicol 231:219–265

    CAS  PubMed  Google Scholar 

  • Davie-Martin CL, Hageman KJ, Chin Y-PP (2013) An improved screening tool for predicting volatilization of pesticides applied to soils. Environ Sci Technol 47:868–876

    Article  CAS  PubMed  Google Scholar 

  • De Stefano LA, Stepanov II, Abramson CI (2014) The first order transfer function in the analysis of agrochemical data in honey bees (Apis mellifera L.): Proboscis extension reflex (PER) studies. Insects 5:167–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S et al (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78:83–92

    Article  CAS  Google Scholar 

  • Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue M-H (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419

    Article  CAS  PubMed  Google Scholar 

  • Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H et al (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250

    Article  CAS  PubMed  Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Pichersky E, Dudareva N (eds.). Biology of floral scent. CRC Press 2006, pp 147–198

  • Dötterl S, Vereecken N (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88:668–697

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) (2014) Conclusion on the peer review of the pesticide human health risk assessment of the active substance chlorpyrifos. EFSA J 12:3640

    Google Scholar 

  • El-Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M et al (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54:653–661. doi:10.1007/s00244-007-9071-8

    Article  CAS  PubMed  Google Scholar 

  • EPA (Environmental Protection Agency) (2015) Chlorpyrifos: Revised human health risk assessment. Environmental Protection Agency, USA

    Google Scholar 

  • Farina WM, Grüter C, Díaz PC (2005) Social learning of floral odours inside the honeybee hive. Proc Biol Sci 272:1923–1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Farina W, Grüter C, Acosta L, Cabe S (2006) Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94:55–60

    Article  PubMed  Google Scholar 

  • Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23:317–323

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B et al (2014) Neonicotinoids interfere with specific components of navigation in honeybees. Plos One 9:e91364

    Article  PubMed  PubMed Central  Google Scholar 

  • Friesen LJ (1973) The search dynamics of recruited honey bee Apis mellifera. Biol Bull 144:107–131

    Article  Google Scholar 

  • Gauthier M, Grünewald B (2012) Neurtransmitter systems in the honeybee brain: Functions in learning and memory. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer Verlag, Heidelberg, pp 155–169

    Chapter  Google Scholar 

  • Gil M, de Marco R (2005) Olfactory learning by means of trophallaxis in Apis mellifera. J Exp Biol 208:671–680

    Article  PubMed  Google Scholar 

  • Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrieri F, Schubert M, Sandoz J-CC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60

    Article  PubMed  PubMed Central  Google Scholar 

  • Guez D, Zhu H, Zhang S, Srinivasan M (2010) Enhanced cholinergic transmission promotes recall in honeybees. J Insect Physiol 56:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Henry M, Béguin M, Requier F, Rollin O, Odoux J-F et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

    Article  CAS  PubMed  Google Scholar 

  • Herbert L, Vazquez D, Arenas A, Farina W (2014) Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 217:3457–3464

    Article  PubMed  Google Scholar 

  • Jaeger T (2008) Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. J Mem Lang 59:434–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Ellis M, Mullin C, Frazier M (2010) Pesticides and honey bee toxicity - USA. Apidologie 41:312–331

    Article  CAS  Google Scholar 

  • Katz EJ, Cortes VI, Eldefrawi ME (1997) Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol 146:227–236

    Article  CAS  PubMed  Google Scholar 

  • Kessler S, Tiedeken E, Simcock K, Derveau S, Mitchell J et al (2015) Bees prefer foods containing neonicotinoid pesticides. Nature 521:74–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosmidis I (2007) brglm: bias reduction in binary-response GLMs

  • Lambert O, Piroux M, Puyo S, Thorin C, L’Hostis M et al (2013) Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS One 8:e67007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin K, Hageman K (2013) Contributions of long-range and regional atmospheric transport on pesticide concentrations along a transect crossing a mountain divide. Environ Sci Technol 17:1390–1398

    Google Scholar 

  • Lavin K, Hageman K, Marx S, Dillingham P, Kamber B (2012) Using trace elements in particulate matter to identify the sources of semivolatile organic contaminants in air at an alpine site. Environ Sci Technol 46:268–276

    Article  CAS  PubMed  Google Scholar 

  • Lunden J, Mayer D, Johansen C, Shanks C, Eves J (1986) Effects of chlorpyrifos insecticide on pollinators. Am Bee J 126:441–444

    Google Scholar 

  • Lusebrink I, Girling RD, Farthing E, Newman TA, Jackson CW et al (2015) The effects of diesel exhaust pollution on floral volatiles and the consequences for honey bee olfaction. J Chem Ecol 41:904–912

    Article  CAS  PubMed  Google Scholar 

  • Mackay D, Giesy J, Solomon K (2014) Fate in the environment and long-range atmospheric transport of the organophosphorus insecticide, chlorpyrifos and its oxon. Rev Environ Contam Toxicol 231:35–76

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Menzel R, Sandoz J-CC, Giurfa M (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J Neurosci Methods 211:159–167

    Article  PubMed  Google Scholar 

  • Ministry for Primary Industries (2012) Food residue surveillance programme 2011–2012 quarterly report. ISBN No: 978-0-478-40047-2

  • Morzycka B (2002) Simple method for the determination of trace levels of pesticides in honeybees using matrix solid-phase dispersion and gas chromatography. J Chromatogr A 982:267–273

    Article  CAS  PubMed  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R et al (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754

    Article  PubMed  PubMed Central  Google Scholar 

  • NZEPA (New Zealand Environmental Protection Authority) (2013) Application for the reassessment of a group of hazardous substances under Section 63 of the Hazardous Substances and New Organisms Act 1996

  • Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA et al (2013) Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun 4:1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Pareja L, Colazzo M, Pérez-Parada A, Niell S, Carrasco-Letelier L et al (2011) Detection of pesticides in active and depopulated beehives in Uruguay. Int J Environ Res Public Health 8:3844–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry C, Søvik E, Myerscough M, Barron A (2015) Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc Natl Acad Sci U S A 112:3427–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohanka M (2011) Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155:219–223

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 131:1–150

    CAS  PubMed  Google Scholar 

  • Raine N, Chittka L (2008) The correlation of learning speed and natural foraging success in bumble-bees. Proc R Soc B 275:803–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhard J, Srinivasan MV (2009) The role of scents in honey bee foraging and recruitment. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches 1. CRC Press/Taylor & Francis Group, Boca Raton, pp 65–182

    Google Scholar 

  • Roussel E, Carcaud J, Sandoz J-C, Giurfa M (2009) Reappraising social insect behavior through aversive responsiveness and learning. PLoS One 4:e4197

    Article  PubMed  PubMed Central  Google Scholar 

  • Rundlöf M, Andersson G, Bommarco R, Fries I, Hederström V et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    Article  PubMed  Google Scholar 

  • Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:e94482

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheiner R, Erber J, Page RE (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J Comp Physiol A 185:1–10

    Article  CAS  PubMed  Google Scholar 

  • Scheiner R, Barnert M, Erber J (2003) Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie 34:67–72

    Article  Google Scholar 

  • Shahpoury P, Hageman K, Matthaei C, Magbanua F (2013) Chlorinated pesticides in stream sediments from organic, integrated and conventional farms. Environ Pollut 181:219–225

    Article  CAS  PubMed  Google Scholar 

  • Shapira M, Thompson C, Soreq H, Robinson G (2001) Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci 17:1–12

    Article  CAS  PubMed  Google Scholar 

  • Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM et al (2014) Properties and uses of chlorpyrifos in the United States. Rev Environ Contam Toxicol 231:13–34

    CAS  PubMed  Google Scholar 

  • Stanley DA, Garratt MP, Wickens JB, Wickens VJ, Potts SG et al (2015) Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528:548–550

    Article  CAS  PubMed  Google Scholar 

  • Stevenson J (1978) The acute toxicity of unformolated pesticides to worker honey bees (Apis mellifera L.). Plant Pathol 27:38–40

    Article  CAS  Google Scholar 

  • Tan K, Chen W, Dong S, Liu X, Wang Y et al (2014) Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS One 9:e102725

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Sluijs J, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M et al (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305

    Article  Google Scholar 

  • Vergoz V, Roussel E, Sandoz J-C, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2:e288

    Article  PubMed  PubMed Central  Google Scholar 

  • von Frisch K (1993) The dance language and orientation of bees. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Watts M (2013) Chlorpyrifos. Pesticide action network Asia and the pacific. Penang, Malaysia

    Google Scholar 

  • Weick J, Thorn R (2002) Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae). J Econ Entomol 95:227–236

    Article  CAS  PubMed  Google Scholar 

  • Wenner AM, Wells PH, Johnson DL (1969) Honey bee recruitment to food sources: olfaction or language? Science 164:84–86

    Article  CAS  PubMed  Google Scholar 

  • Williamson SM, Wright GA (2013) Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol 216:1799–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson S, Moffat C, Gomersall M, Saranzewa N, Connolly C et al (2013) Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Front Physiol 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

  • Yang E, Chuang Y, Chen Y, Chang L (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 107:1743–1748

    Article  Google Scholar 

Download references

Acknowledgments

Marsden Fund Grant UOO1207

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Urlacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urlacher, E., Monchanin, C., Rivière, C. et al. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions. J Chem Ecol 42, 127–138 (2016). https://doi.org/10.1007/s10886-016-0672-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0672-4

Keywords

Navigation