Skip to main content

Advertisement

Log in

Antennal Olfactory Sensilla Responses to Insect Chemical Repellents in the Common Bed Bug, Cimex lectularius

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Populations of the common bed bug Cimex lectularius (Hemiptera; Cimicidae), a temporary ectoparasite on both humans and animals, have surged in many developed countries. Similar to other haematophagous arthropods, C. lectularius relies on its olfactory system to detect semiochemicals in the environment, including both attractants and repellents. To elucidate the olfactory responses of the common bed bug to commonly used insect chemical repellents, particularly haematophagous repellents, we investigated the neuronal responses of individual olfactory sensilla in C. lectularius’ antennae to 52 insect chemical repellents, both synthetic and botanic. Different types of sensilla displayed highly distinctive response profiles. While C sensilla did not respond to any of the insect chemical repellents, Dγ sensilla proved to be the most sensitive in response to terpene-derived insect chemical repellents. Different chemical repellents elicited neuronal responses with differing temporal characteristics, and the responses of the olfactory sensilla to the insect chemical repellents were dose-dependent, with an olfactory response to the terpene-derived chemical repellent, but not to the non-terpene-derived chemical repellents. Overall, this study furnishes a comprehensive map of the olfactory response of bed bugs to commonly used insect chemical repellents, providing useful information for those developing new agents (attractants or repellents) for bed bug control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson AL, Leffler K (2008) Bed bug infestations in the news: a picture of an emerging public health problem in the United States. J Environ Health 70:24–27

    PubMed  Google Scholar 

  • Ayasse M, Paxton R (2002) Brood protection in social insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 117–148

    Google Scholar 

  • Barnard DR, Xue R (2004) Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol 41:726–730

    Article  CAS  PubMed  Google Scholar 

  • Bartonicka T, Gaisler J (2007) Seasonal dynamics in the numbers of parasitic bugs (Heteroptera, Cimicidae): a possible cause of roost switching in bats (Chiroptera, Vespertilionidae). Parasitol Res 100:1323–1330

    Article  PubMed  Google Scholar 

  • Bissinger BW, Roe RM (2010) Tick repellents: past, present, and future. Pestic Biochem Physiol 96:63–79

    Article  CAS  Google Scholar 

  • Bohbot JD, Fu L, Le TC, Chauhan KR, Cantrell CL, Dickens JC (2011) Multiple activities of insect repellents on odorant receptors in mosquitoes. Med Vet Entomol 25:436–444

    Article  CAS  PubMed  Google Scholar 

  • Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    Article  PubMed  Google Scholar 

  • Dickens JC, Bohbot JD (2013) Mini review: mode of action of mosquito repellents. Pestic Biochem Physiol 106:149–155

    Article  CAS  Google Scholar 

  • Doggett SL, Dwyer DE, Penas PF, Russell RC (2012) Bed bugs: clinical relevance and control options. Clin Microbiol Rev 25:164–192

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghaninia M, Ignell R, Hansson BS (2007) Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquito, Aedes aegypti. Eur J Neurosci 26:1611–1623

    Article  PubMed Central  PubMed  Google Scholar 

  • Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 99:2507–2515

    Article  CAS  PubMed  Google Scholar 

  • Guerenstein PG, Guerin PM (2001) Olfactory and behavioral responses of the blood-sucking bug Triatoma infestans to odors of vertebrate hosts. J Exp Biol 204:585–597

    CAS  PubMed  Google Scholar 

  • Harraca V, Ignell R, Löfstedt C, Ryne C (2010) Characterization of the antennal olfactory system of the bed bug (Cimex lectularius). Chem Senses 35:195–204

    Article  CAS  PubMed  Google Scholar 

  • Haynes KF, Potter MF (2013) Recent progress in bed bug management. In: Ishaaya I, Palli SR, Horowitz AR (eds) Advanced technologies for managing insect pests. Springer, New York, pp 269–278

    Chapter  Google Scholar 

  • Hill SR, Hanson BS, Ignell R (2009) Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. Chem Senses 34:231–252

    Article  PubMed  Google Scholar 

  • Jaenson TGT, Palsson K, Brog-Karlson AK (2005) Evaluation of extracts and oils of tick-repellent plants from Sweden. Med Vet Entomol 19:345–352

    Article  CAS  PubMed  Google Scholar 

  • Julian GE, Cahan S (1999) Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Anim Behav 58:437–442

    Article  PubMed  Google Scholar 

  • Kain P, Boyle SM, Tharadra SK, Guda T, Pham C, Dahanukar A, Ray A (2013) Odour receptors and neurons for DEET and new insect repellents. Nature 502:507–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Prakash S, Rao KM (1995) Comparative activity of three repellents against bed bug Cimex hemipterus (Fabr.). Indian J Med Res 102:20–23

    CAS  PubMed  Google Scholar 

  • Laurent G, Stopfer M, Friedrich R, Rabinovich M, Volkovskii A, Abarbanel H (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Levinson HZ, Levinson AR, Muller B, Steinbrecht RA (1974) Structural of sensillum, olfactory perception, and behavior of the bed bug, Cimex lectularius, in response to its alarm pheromone. J Insect Physiol 20:1231–1248

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Chen L, Appel AG, Liu N (2013) Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus. J Insect Physiol 59:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Masterman R, Ross R, Mesce K, Spivak M (2001) Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J Comp Physiol A 187:441–452

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB (2011) A natural polymorphism alters odor and DEET sensitivity in an insect odorant receptor. Nature 478:511–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson C, Coats J (2001) Insect repellents-past, present and future. Pestic Outlook 12:154–158

    Article  Google Scholar 

  • Qiu YT, Loon JJA, Takken W, Meijerink J, Smid HM (2006) Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chem Senses 31:845–863

    Article  CAS  PubMed  Google Scholar 

  • Rollo CD, Borden JH, Casey IB (1995) Endogenously produced repellent from American cockroach (Blattaria: Blattidae): FlUlction in death recognition. Environ Entomol 24:116–124

    Google Scholar 

  • Romero A, Potter MF, Potter DA, Haynes KF (2007) Insecticide resistance in the bed bug: a factor in the pest’s sudden resurgence? J Med Entomol 44:175–178

    Article  PubMed  Google Scholar 

  • Sudakin DL, Trevathan WR (2003) DEET: a review and update of safety and risk in the general population. Clin Toxicol 41:831–839

    Article  CAS  Google Scholar 

  • Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci U S A 105:13598–13603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Syed Z, Leal WS (2009) Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci U S A 106:18803–18808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Syed Z, Pelletier J, Flounders E, Chitolina RF, Leal WS (2011) Generic insect repellent detector from the fruit fly Drosophila melanogaster. PLoS ONE e17705. doi:10.1371/journal.Pone.0017705.

  • Wang G, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 107:4418–4423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Worden BD, Parker PG (2005) Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre- and postcopulatory behaviours. Anim Behav 70:1047–1053

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by Award AAES Hatch/Multistate Grants ALA08-045 and ALA015-1-10026 to N.L.

Authors' contributions

Conceived and designed the study: NL. Performed the experiments: FL. Prepared the materials: NL, KFH, AA. Wrote the paper: NL, FL. All authors reviewed the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nannan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Haynes, K.F., Appel, A.G. et al. Antennal Olfactory Sensilla Responses to Insect Chemical Repellents in the Common Bed Bug, Cimex lectularius . J Chem Ecol 40, 522–533 (2014). https://doi.org/10.1007/s10886-014-0435-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0435-z

Keywords

Navigation