Skip to main content
Log in

Real-Time Monitoring of (E)-β-Farnesene Emission in Colonies of the Pea Aphid, Acyrthosiphon pisum, Under Lacewing and Ladybird Predation

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Aphids (Homoptera) are constantly under attack by a variety of predators and parasitoids. Upon attack, most aphids release alarm pheromone that induces escape behavior in other colony members, such as dropping off the host plant. In the pea aphid, Acyrthosiphon pisum Harris (Aphididae), the only component of this alarm pheromone is the sesquiterpene (E)-β-farnesene (EBF). EBF is thought to act as a kairomone by attracting various species of parasitoids and predators including lacewings and ladybirds. Lately, it also was proposed that EBF is constantly emitted in low quantities and used by aphids as a social cue. No study has focused on emission dynamics of this compound over a long time period. Here, we present the first long-time monitoring of EBF emission in aphid colonies using real-time monitoring. We used a zNoseTM to analyze the headspace of colonies of the pea aphid, under lacewing (Neuroptera: Chrysopidae) and ladybird (Coleoptera: Coccinellidae) predation, over 24 hr. We found no emission of EBF in the absence of predation. When either a ladybird adult or a lacewing larva was placed in an aphid colony, EBF was detected in the headspace of the colonies in the form of emission blocks; i.e., periods in which EBF was emitted alternating with periods without EBF emission. The number of emission blocks correlated well with the number of predation events that were determined at the end of each experiment. There was no circadian rhythm in alarm pheromone emission, and both predators were active during both night and day. Our results show that alarm pheromone emission pattern within an aphid colony is driven by the feeding behavior of a predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acar EB, Medina JC, Lee ML, Booth GM (2001) Olfactory behavior of convergent lady beetles (Coleoptera : Coccinellidae) to alarm pheromone of green peach aphid (Hemiptera: Aphididae). Can Entomol 133:389–397

    Article  Google Scholar 

  • Agelopoulos NG, Pickett JA (1998) Headspace analysis in chemical ecology: effects of different sampling methods on ratios of volatile compounds present in headspace samples. J Chem Ecol 24:1161–1172

    Article  CAS  Google Scholar 

  • Al Abassi S, Birkett MA, Pettersson J, Pickett JA, Wadhams LJ, Woodcock CM (2000) Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J Chem Ecol 26:1765–1771

    Article  Google Scholar 

  • Almohamad R, Verheggen FJ, Francis F, Lognay G, Haubruge E (2008) Emission of alarm pheromone by non-preyed aphid colonies. J Appl Entomol 132:601–604

    Article  CAS  Google Scholar 

  • Bond AB (1980) Optimal foraging in a uniform habitat—search mechanism of the green lacewing. Anim Behav 28:10–19

    Article  Google Scholar 

  • Boo KS, Chung IB, Han KS, Pickett JA, Wadhams LJ (1998) Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. J Chem Ecol 24:631–643

    Article  CAS  Google Scholar 

  • Canard M, Duelli P (1984) Predatory behavior of larvae and cannibalism. In: Canard M, Séméria Y, New TR (eds) Biology of chrysopidae. Dr. W. Junk Publishers, The Hague, pp 92–100

    Google Scholar 

  • Chen SW, Edwards JS (1972) Observations on structure of secretory cells associated with aphid cornicles. Z Zellforsch Mik Ana 130:312

    Article  CAS  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • de Vos M, Cheng WY, Summers HE, Raguso RA, Jander G (2010) Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes. Proc Natl Acad Sci U S A 107:14673–14678

    Article  PubMed  Google Scholar 

  • Dixon AFG (1998) Aphid ecology. Chapman & Hall, London

    Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS (1966) Defence by smear—supercooling in cornicle wax of aphids. Nature 211:73–74

    Article  CAS  Google Scholar 

  • Eisenbach J, Mittler TE (1980) An aphid circadian-rhythm—factors affecting the release of sex-pheromone by oviparae of the greenbug, Schizaphis graminum. J Insect Physiol 26:511–515

    Article  Google Scholar 

  • Francis F, Lognay G, Haubruge E (2004) Olfactory responses to aphid and host plant volatile releases: (E)-beta-farnesene an effective kairomone for the predator Adalia bipunctata. J Chem Ecol 30:741–755

    Article  PubMed  CAS  Google Scholar 

  • Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E (2005) Is the (E)-beta-farnesene only volatile terpenoid in aphids? J Appl Entomol 129:6–11

    Article  CAS  Google Scholar 

  • Gut J, van Oosten AM (1985) Functional-significance of the alarm pheromone composition in various morphs of the green peach aphid. Myzus Persicae 37:199–204

    Google Scholar 

  • Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton-transfer reaction mass-spectrometry—online trace gas-analysis at the ppb level. Int J Mass Spectrom 149:609–619

    Article  Google Scholar 

  • Hatano E, Kunert G, Weisser WW (2008) Chemical cues mediating interaction in a food chain: aphid-location by natural enemies. Eur J Endocrinol 105:797–806

    CAS  Google Scholar 

  • Joachim C, Hatano E, David A, Kunert M, Linse C, Weisser WW (2013) Modulation of aphid alarm pheromone emission of pea aphid prey by predators. J Chem Ecol 39:773–782

    Article  PubMed  CAS  Google Scholar 

  • Kawecki Z (1932) Beobachtungen über das Verhalten und die Sinnesorientierung der Florfliegenlarven. Bull Int Acad Pol Sci Lett 2:91–106

    Google Scholar 

  • Kunert M, Biedermann A, Koch T, Boland W (2002) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Sep Sci 25:1–6

    Article  Google Scholar 

  • Kunert G, Otto S, Röse USR, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603

    Article  Google Scholar 

  • Losey JE, Denno RF (1998) The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecol Entomol 23:53–61

    Article  Google Scholar 

  • Mondor EB, Roitberg BD (2004) Inclusive fitness benefits of scent-marking predators. Proc R Soc Lond B 271:341–343

    Article  Google Scholar 

  • Mondor EB, Baird DS, Slessor KN, Roitberg BD (2000) Ontogeny of alarm pheromone secretion in pea aphid, Acyrthosiphon pisum. J Chem Ecol 26:2875–2882

    Article  CAS  Google Scholar 

  • Müller-Schwarze D (2006) Chemical ecology of vertebrates. Cambridge University Press, New York

    Book  Google Scholar 

  • Nakamuta K (1984) Visual orientation of a ladybeetle, Coccinella septempunctata L., (Coleoptera, Coccinellidae), toward its prey. Appl Entomol Zool 19:82–86

    Google Scholar 

  • Nakamuta K (1987) Diel rhythmicity of prey-search activity and its predominance over starvation in the lady beetle, Coccinella septempunctata bruckii. Physiol Entomol 12:91–98

    Article  Google Scholar 

  • Narayandas GK, Alyokhin AV (2006) Diurnal patterns in host finding by potato aphids, Macrosiphum euphorbiae (Homoptera : Aphididae). J Insect Behav 19:347–356

    Article  Google Scholar 

  • Nault LR, Bowers WS (1974) Multiple alarm pheromones in aphids. Entomol Exp Appl 17(3):455–456

    Article  CAS  Google Scholar 

  • Pinto DM, Blande JD, Nykanen R, Dong WX, Nerg AM, Holopainen JK (2007) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694

    Article  PubMed  CAS  Google Scholar 

  • Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Article  PubMed  Google Scholar 

  • Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of gerneralist predators on a biological control agent, Chrysoperla carnea: direct observations. Ecol Appl 9:409–417

    Article  Google Scholar 

  • Schwartzberg EG, Kunert G, Stephan C, Biedermann A, Rose USR, Gershenzon J, Boland W, Weisser WW (2008) Real-time analysis of alarm pheromone emission by the pea aphid (Acyrthosiphon pisum) under predation. J Chem Ecol 34:76–81

    Article  PubMed  CAS  Google Scholar 

  • Stewart-Jones A, Dewhirst SY, Durrant L, Fitzgerald JD, Hardie J, Hooper AM, Pickett JA, Poppy GM (2007) Structure, ratios and patterns of release in the sex pheromone of an aphid, Dysaphis plantaginea. J Exp Biol 210:4335–4344

    Article  PubMed  CAS  Google Scholar 

  • Thieme T, Dixon AFG (1996) Mate recognition in the Aphis fabae complex: daily rhythm of release and specificity of sex pheromones. Entomol Exp Appl 79:85–89

    Article  CAS  Google Scholar 

  • Torto B (2004) Chemical signals as attractants, repellents and aggregation stimulants. In: Hardege JD (ed) Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. Eolss Publishers, Oxfort, http://www.eolss.net

    Google Scholar 

  • Verheggen FJ, Fagel Q, Heuskin S, Lognay G, Francis F, Haubruge E (2007) Electrophysiological and behavioral responses of the multicolored asian lady beetle, Harmonia axyridis pallas, to sesquiterpene semiochemicals. J Chem Ecol 33:2148–2155

    Article  PubMed  CAS  Google Scholar 

  • Verheggen FJ, Haubruge E, De Moraes CM, Mescher MC (2009) Social enviroment influences aphid production of alarm pheromone. Behav Ecol 20:283–288

    Article  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: Communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zhu JW, Cosse AA, Obrycki JJ, Boo KS, Baker TC (1999) Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J Chem Ecol 25:1163–1177

    Article  CAS  Google Scholar 

  • Zhu J, Obrycki JJ, Ochieng SA, Baker TC, Pickett JA, Smiley D (2005) Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92:277–281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Katz Biotech for the supply of aphid predators free of charge, Anja David and Dr. Sybille Unsicker of the MPI for Chemical Ecology for providing the heated desorber tube and the air pump system, and Sylvia Creutzburg for her support in rearing aphids and plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Joachim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Examples of aphid alarm pheromone, (E)-β-farnesene (EBF), emission patterns from an aphid colony before a predator was introduced. A) Lacewing replicate #5, B) Ladybird replicate #3. The emission patterns do not resemble EBF emission patterns caused by a predator attack. (JPEG 33 kb)

High resolution image (TIFF 14014 kb)

Figure S2

Examples of aphid alarm pheromone (E)-β-farnesene (EBF) emission patterns of an aphid colony under lacewing (A) or ladybird (B) attack, respectively. Gray background indicates scotophase; white background indicates photophase. Grey arrows indicate the start of an emission block as defined in the text. A) Lacewing replicate #8, number of aphids consumed =8, number of emission blocks =4. B) Ladybird replicate #5, number of aphids consumed =3, number of emission blocks =3. (JPEG 56 kb)

High resolution image (TIFF 31722 kb)

Table S3

1 Key for classification of individual aphid alarm pheromone, (E)-β-farnesene (EBF), emission blocks to the five different emission-block types (as described in the text). (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joachim, C., Weisser, W.W. Real-Time Monitoring of (E)-β-Farnesene Emission in Colonies of the Pea Aphid, Acyrthosiphon pisum, Under Lacewing and Ladybird Predation. J Chem Ecol 39, 1254–1262 (2013). https://doi.org/10.1007/s10886-013-0348-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0348-2

Keywords

Navigation