Skip to main content
Log in

Exploitation of Chemical Signaling by Parasitoids: Impact on Host Population Dynamics

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Chemical information mediates species interactions in a wide range of organisms. Yet, the effect of chemical information on population dynamics is rarely addressed. We designed a spatio-temporal parasitoid—host model to investigate the population dynamics when both the insect host and the parasitic wasp that attacks it can respond to chemical information. The host species, Drosophila melanogaster, uses food odors and aggregation pheromone to find a suitable resource for reproduction. The larval parasitoid, Leptopilina heterotoma, uses these same odors to find its hosts. We show that when parasitoids can respond to food odors, this negatively affects fruit fly population growth. However, extra parasitoid responsiveness to aggregation pheromone does not affect fruit fly population growth. Our results indicate that the use of the aggregation pheromone by D. melanogaster does not lead to an increased risk of parasitism. Moreover, the use of aggregation pheromone by the host enhances its population growth and enables it to persist at higher parasitoid densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allee WC (1931) Animal aggregations, a study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Allemand R, Fleury F, Lemaître C, Boulétreau M (1999) Population dynamics and competitive interactions in two species of Leptopilina (Hymenoptera : Figitidae) which parasitize Drosophila in the Rhone valley (S-E France). Ann Soc Entomol Fr 35:97–103

    Google Scholar 

  • Allen JC, Brewster CC, Slone DH (2001) Spatially explicit ecological models: a spatial convolution approach. Chaos Solitons Fractals 12:333–347

    Article  Google Scholar 

  • Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. (2nd ed). Cold Spring Harbor Laboratory Press, pp. 162–164

  • Bartelt RJ, Schaner AM, Jackson LL (1985) Cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:747–1756

    Google Scholar 

  • Bell WJ, Cardé RT (1984) Chemical ecology of insects. Chapman & Hall, London New York

    Google Scholar 

  • Berec L, Boukal DS, Berec M (2001) Linking the Allee effect, sexual reproduction, and temperature-dependent sex determination via spatial dynamics. Am Nat 157:217–230

    Article  PubMed  CAS  Google Scholar 

  • Boulétreau-Merle J, Fouillet P, Varaldi J (2003) Divergent strategies in low temperature environments for the sibling species Drosophila melanogaster and D. simulans: overwintering in extension border areas of France and comparison with African populations. Evol Ecol 17:523–548

    Article  Google Scholar 

  • Brewster CC, Allen JC (1997) Spatiotemporal model for studying insect dynamics in large-scale cropping systems. Environ Entomol 26:473–482

    Google Scholar 

  • Bruinsma M, Dicke M (2008) Herbivore-induced indirect defence: from induction mechanisms to community ecology. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 31–60

    Chapter  Google Scholar 

  • Bukovinszky T, Gols R, Hemerik L, Van Lenteren JC, Vet LEM (2007) Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host-parasitoid interactions. J Anim Ecol 76:845–853

    Article  PubMed  Google Scholar 

  • Cardé RT, Miller J (2004) Advances in insect chemical ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • De Boer JG, Dicke M (2004) Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles. Entomol Exp Appl 110:181–189

    Article  Google Scholar 

  • de Gee M, Lof ME, Hemerik L (2008) The effect of chemical information on the spatial distribution of fruit flies: II parameterization, calibration and sensitivity. Bull Math Biol 70:1850–1868

    Article  PubMed  Google Scholar 

  • de Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. TIPS 15:167–175

    CAS  Google Scholar 

  • Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: an ecological perspective. Annu Rev Ecol Syst 32:1–23

    Article  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:31–139

    Article  Google Scholar 

  • Dicke M, Takken W (eds) (2006) Chemical ecology: from gene to ecosystem. Springer, Dordrecht

    Google Scholar 

  • Dicke M, Van Lenteren JC, Boskamp GJF, Van Voorst R (1985) Intensification and prolongation of host searching in Leptopilina heterotoma (Thomson) (Hymenoptera: Eucoilidae) through a kairomone produced by Drosophila melanogaster. J Chem Ecol 11:125–136

    Article  CAS  Google Scholar 

  • Dicke M, Vet LEM, Wiskerke JSC, Stapel O (1994) Parasitoid of Drosophila larvae solves foraging problem through infochemical detour: conditions affecting employment of this strategy. Nor J Agric Sci 16:227–232

    Google Scholar 

  • Etienne RS, Wertheim B, Hemerik L, Schneider P, Powell JA (2002) The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecol Model 148:153–168

    Article  Google Scholar 

  • Fatouros NE, Huigens ME, Van Loon JJA, Dicke M, Hilker M (2005) Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433:704

    Article  PubMed  CAS  Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Fleury F, Ris N, Allemand R, Fouillet P, Carton Y, Boulétreau M (2004) Ecological and genetic interactions in Drosophila-parasitoids communities: a case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France. Genetica 120:181–194

    Article  PubMed  CAS  Google Scholar 

  • Fraker ME (2008) The dynamics of predation risk assessment: responses of anuran larvae to chemical cues of predators. J Anim Ecol 77:638–645

    Article  PubMed  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Haccou P, De Vlas SJ, Van Alphen JJM, Visser ME (1991) Information processing by foragers: effects of intra-patch experience on the leaving tendency of Leptopilina heterotoma. J Anim Ecol 60:93–106

    Article  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    Article  PubMed  CAS  Google Scholar 

  • Hassell MP (2000) The spatial and temporal dynamics of host—parasitoid interactions. Oxford University Press, Oxford

    Google Scholar 

  • Hedlund K, Vet LEM, Dicke M (1996) Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77:390–398

    Article  Google Scholar 

  • Hirzel AH, Nisbet RM, Murdoch WW (2007) Host-parasitoid spatial dynamics in heterogeneous landscapes. Oikos 116:2082–2096

    Article  Google Scholar 

  • Hoffmeister TS, Rohlfs M (2001) Aggregative egg distributions may promote species co-existence—but why do they exist? Evol Ecol Res 3:37–50

    Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can Entomol 91:293–320

    Article  Google Scholar 

  • Ives AR (1992) Continuous-time models of host-parasitoid interactions. Am Nat 140:1–29

    Article  PubMed  CAS  Google Scholar 

  • Janssen A, Driessen G, de Haan M, Roodbol N (1988) The impact of parasitoids on natural populations of temperate woodland Drosophila. Neth J Zool 38:61–73

    Article  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:261–394

    Google Scholar 

  • Lof ME, Etienne RS, Powell J, De Gee M, Hemerik L (2008) The effect of chemical information on the spatial distribution of fruit flies: I model results. Bull Math Biol 70:1827–1849

    Article  PubMed  Google Scholar 

  • Lof ME, De Gee M, Hemerik L (2009) Odor-mediated aggregation enhances the colonization ability of Drosophila melanogaster. J Theor Biol 258:363–370

    Article  PubMed  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Morais PB, Martins MB, Klaczko LB, Mendonça-Hagler LC, Hagler AN (1995) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl Environ Microbiol 61:4251–4257

    PubMed  CAS  Google Scholar 

  • Neubert MG, Kot M, Lewis MA (1995) Dispersal and pattern formation in a discrete-time predator–prey model. Theor Popul Biol 48:7–43

    Article  Google Scholar 

  • Nguyen-Huu T, Let C, Poggiale JC, Auger P (2006) Effect of movement frequency on global host—parasitoid spatial dynamics with unstable local dynamics. Ecol Model 197:290–295

    Article  Google Scholar 

  • Ostränd F, Anderbrant O (2003) From where are insects recruited? A new model to interpret catches of attractive traps. Agric For Entomol 5:163–171

    Article  Google Scholar 

  • Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284:99–101

    Article  PubMed  CAS  Google Scholar 

  • Pearce IG, Chaplain MAJ, Schofield PG, Anderson ARA, Hubbard SF (2006) Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications. J Theor Biol 241:876–886

    Article  PubMed  Google Scholar 

  • Pearce IG, Chaplain MAJ, Schofield PG, Anderson ARA, Hubbard SF (2007) Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J Math Biol 55:365–388

    Article  PubMed  Google Scholar 

  • Powell JA, McMillen T, White P (1998) Connecting a chemotactic model for mass attack to a rapid integro-difference emulation strategy. SIAM J Appl Math 59:547–572

    Article  Google Scholar 

  • Puente M, Magori K, Kennedy GG, Gould F (2008) Impact of herbivore-induced plant volatiles on parasitoid foraging success: a spatial simulation of the Cotesia rubecula, Pierus rapae, and Brassica oleracea system. J Chem Ecol 34:959–970

    Article  PubMed  CAS  Google Scholar 

  • Raffa KF, Hobson KR, Lafontaine S, Aukema BH (2007) Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia 153:1009–1019

    Article  PubMed  Google Scholar 

  • Rohlfs M (2006) Genetic variation and the role of insect life history traits in the ability of Drosophila larvae to develop in the presence of a competing filamentous fungus. Evol Ecol 20:271–289

    Article  Google Scholar 

  • Rohlfs M, Hoffmeister TS (2003) An evolutionary explanation of the aggregation model of species coexistence. Proc R Soc Lond B 270(suppl 1):S33–S35

    Article  Google Scholar 

  • Rohlfs M, Obmann B, Petersen R (2005) Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol Entomol 30:556–563

    Article  Google Scholar 

  • Schofield PG, Chaplain MAJ, Hubbard SF (2002) Mathematical modelling of host-parasitoid systems: effects of chemically mediated parasitoid foraging strategies on within- and between-generation spatio-temporal dynamics. J Theor Biol 214:31–47

    Article  PubMed  Google Scholar 

  • Schofield PG, Chaplain MAJ, Hubbard SF (2005) Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronized generations. J Math Biol 50:559–583

    Article  PubMed  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemical mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29

    Article  Google Scholar 

  • Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7:e42238

    Article  PubMed  CAS  Google Scholar 

  • Tentelier C, Fauvergue X (2007) Herbivore-induced plant volatiles as cues for habitat assessment by a foraging parasitoid. J Anim Ecol 76:1–8

    Article  PubMed  Google Scholar 

  • Tilman D, Kareiva P (eds) (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton

    Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Rose USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92:4169–4174

    Article  PubMed  CAS  Google Scholar 

  • Van LENTEREN JC, Bakker K (1978) Behavioural aspects of the functional responses of a parasitoid (Pseudeucoila bochei Weld) to its host (Drosophila melanogaster). Neth J Zool 28:213–233

    Article  Google Scholar 

  • Vet LEM (1999) From chemical to population ecology: infochemical use in an evolutionary context. J Chem Ecol 25:31–49

    Article  CAS  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Ann Rev Entomol 37:141–172

    Article  Google Scholar 

  • Wajnberg E, Bernstein E, Van Alphen JJM (eds) (2008) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Wajnberg E, Coquillard P, Vet LEM, Hoffmeister T (2012) Optimal resource allocation to survival and reproduction in parasitic wasps foraging in fragmented habitats. PLoS One 7:e38227

    Article  PubMed  CAS  Google Scholar 

  • Wall C, Perry JN (1987) Range of action of moth sex-attractant sources. Entomol Exp Appl 44:5–14

    Article  Google Scholar 

  • Wertheim B (2001) Individual risk of parasitism in host aggregations: a behaviour-based model on functional and numerical responses. Ecology of Drosophila aggregation pheromone: a multitrophic approach. pp. 111–138. PhD Thesis, Wageningen University, Wageningen, The Netherlands

  • Wertheim B, Marchais J, Vet LEM, Dicke M (2002) Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms. Ecol Entomol 27:608–617

    Article  Google Scholar 

  • Wertheim B, Vet LEM, Dicke M (2003) Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila - Leptopilina interaction. Oikos 100:269–282

    Article  Google Scholar 

  • Wertheim B, Van Baalen E-J, Dicke M, Vet LEM (2005) Pheromone-mediated aggregation in nonsocial arthropods: An evolutionary ecological perspective. Ann Rev Entomol 50:321–346

    Article  CAS  Google Scholar 

  • Wertheim B, Allemand R, Vet LEM, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecol Entomol 31:216–226

    Article  Google Scholar 

  • Wiskerke JSC, Dicke M, Vet LEM (1993) Larval parasitoid uses aggregation pheromone of adult hosts in foraging behaviour: a solution to the reliability-detectability problem. Oecologia 93:145–148

    Google Scholar 

  • Wyatt TD (2004) Breaking the code: illicit signallers and receivers of semiochemical signals. In: Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge, pp 229–250

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjolein E. Lof.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material S1

(DOCX 91.8 kb)

Supplementary Material S2

(DOCX 43 kb)

Fig. S3

In all eight figures the x-axis shows the log (base 10) of the total number of fruit fly larvae present in the orchard. The top line of figures represents the fate of the larvae population for the fixed number of parasitoids and the bottom line of figures the same for the fixed fraction of parasitoids. The (a) + (e) figures show percentage mortality due to the Allee effect, the (b) + (f) figures percentage mortality due to competition, the (c) + (g) figures percentage parasitism and the (d) + (h) figures the percentage survival. (PDF 89 kb)

Table S4

(DOCX 18 kb)

Table S5

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lof, M.E., De Gee, M., Dicke, M. et al. Exploitation of Chemical Signaling by Parasitoids: Impact on Host Population Dynamics. J Chem Ecol 39, 752–763 (2013). https://doi.org/10.1007/s10886-013-0298-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0298-8

Keywords

Navigation