Skip to main content
Log in

Improving the Efficiency of Lepidopteran Pest Detection and Surveillance: Constraints and Opportunities for Multiple-Species Trapping

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Surveillance using attractants for invasive species can allow early detection of new incursions and provide decision support to response programs. Simultaneous trapping for multiple species, by baiting traps with several lures, is expected to increase the number of species that can be targeted in surveillance programs and improve the cost-effectiveness without affecting surveillance coverage. We tested this hypothesis by choosing four potential forest and urban lepidopteran pest species that are present in Europe but not yet in New Zealand and many other countries. We deployed traps in central and southern Europe with single lures or all possible species combinations (up to four lures per trap). There was only limited interference, apparently due to trap saturation, but no evidence for interspecific repellency among lures for gypsy moth, Lymantria dispar, fall webworm, Hyphantria cunea, pine processionary moth, Thaumetopoea pityocampa, and pine shoot moth, Rhyacionia buoliana. To assess what factors may be important in species compatibility/suitability for multiple-species trapping, we combined our results with those of previous studies conducted by the United States Department of Agriculture. For 75 combinations of pheromones, tested singly or in combination, 19 % showed no effect on trap catch for any of the species tested. In the other cases, either one or both species showed a reduction in trap catch. However, few lure combinations caused complete or nearly complete suppression. For most combinations, catches were still sufficiently high for detection purposes. Species from the same superfamily exhibited more interference than more distantly related species. Together, these results suggest that there are opportunities to improve the range of exotic pests under surveillance, at little additional cost, by multiple-species trapping for which compatibility has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ando, T., Inomata, S., and Yamamoto, M. 2004. The chemistry of pheromones and other semiochemicals. Top. Curr. Chem. 239:51–96.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, K. F. and Ball, S. L. 2005. DNA barcodes for biosecurity: invasive species identification. Philos. Trans R. Soc. B: Biol. Sci. 360:1813–1823.

    Article  CAS  Google Scholar 

  • Aukema, J. E., McCullough, D. G., Von Holle, B., Liebhold, A. M., Britton, K., and Frankel, S. J. 2010. Historical accumulation of non-indigenous forest pests in the continental United States. BioScience 60:886–897.

    Article  Google Scholar 

  • Aukema, J. E., Leung, B., Kovacs, K., Chivers, C., Britton, K. O., Englin, J., Frankel, S. J., Haight, R. G., Holmes, T. P., Liebhold, A. M., McCullough, D. G., and Von Holle, B. 2011. Economic impacts of non-native forest insects in the United States. PLoS One 6:e24587.

    Article  PubMed  CAS  Google Scholar 

  • Bogich, T. L., Liebhold, A. M., and Shea, K. 2008. To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J. Appl. Ecol. 45:1134–1142.

    Article  Google Scholar 

  • Brockerhoff, E. G., Jones, D. C., Kimberley, M. O., Suckling, D. M., and Donaldson, T. 2006. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. For. Ecol. Manage. 228:234–240.

    Article  Google Scholar 

  • Brockerhoff, E. G., Liebhold, A., Richardson, B., and Suckling, D. M. 2010. Eradication of invasive forest insects: concepts, methods, costs and benefits. N. Z. J. For. Sci. 40(suppl):S117–S135.

    Google Scholar 

  • Elkinton, J. S. 1987. Changes in efficiency of the pheromone-baited milk-carton trap as it fills with male gypsy moths (Lepidoptera: Lymantriidae). J. Econ. Entomol. 80:754–757.

    Google Scholar 

  • El-Sayed, A. M. 2012. The Pherobase: Database of insect pheromones and semiochemicals. http://www.pherobase.com. Retrieved 11 April 2012.

  • El-Sayed, A. M., Gibb, A. R., and Suckling, D. M. 2005. Chemistry of the sex pheromone gland of the fall webworm, Hyphantria cunea, discovered in New Zealand. N. Z. Plant Prot. 58:31–36.

    CAS  Google Scholar 

  • Gries, G., Gries, R., Khaskin, G., Slessor, K. N., Grant, G. G., Liška, J., and Kapitola, P. 1996. Specificity of nun and gypsy moth sexual communication through multiple-component pheromone blends. Naturwissenschaften 83:382–385.

    Article  CAS  Google Scholar 

  • Gries, G., Schaefer, P. W., Gries, R., Liška, J., and Gotoh, T. 2001. Reproductive character displacement in Lymantria monacha from northern Japan? J. Chem. Ecol. 27:1163–1176.

    Article  PubMed  CAS  Google Scholar 

  • Howse, P. E., Stevens, I. D. R., and Jones, O. T. 1998. Insect Pheromones and Their Use in Pest Management. Chapman & Hall, London, UK.

    Google Scholar 

  • Jactel, H., Menassieu, P., Vétillard, F., Barthélémy, B., Piou, D., Frérot, B., Rousselet, J., Goussard, F., Branco, M., and Battisti, A. 2006. Population monitoring of the pine processionary moth (Lepidoptera: Thaumetopoeidae) with pheromone-baited traps. For. Ecol. Manage. 235:96–106.

    Article  Google Scholar 

  • Johansson, B. G., Anderbrant, O., and Sierpinski, A. 2002. Multispecies trapping of six pests of Scots pine in Sweden and Poland. J. Appl. Entomol. 126:212–216.

    Article  Google Scholar 

  • Jones, B. C., Roland, J., and Evenden, M. L. 2009. Development of a combined sex pheromone-based monitoring system for Malacosoma disstria (Lepidoptera: Lasoicampidae) and Choristoneura conflictana (Lepidoptera: Tortricidae). Environ. Entomol. 38:459–471.

    Article  PubMed  CAS  Google Scholar 

  • Mastro, V. C., Schwalbe, C. P., Kingsley, P. C., and Lance, D. R. 1984. Pheromone-based survey technology for early detection of exotic insect pests. Report period: April 3, 1983–September 30, 1984. USDA Otis, Massachusetts, Report, Project CNPPSDP 4.1.1, p. 107–149.

  • Mastro, V. C., Schwalbe, C. P., and Kingsley, P. C. 1985. Pheromone-based survey technology for early detection of exotic insect pests. Report period: October 1, 1984–September 30, 1985. USDA Otis, Massachusetts, Report, Project CNPPSDP 4.1.1, p. 141–161.

  • Pimentel, D., Zuniga, R., and Morrison, D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52:273–288.

    Article  Google Scholar 

  • Pogue, M. G., and Schaefer, P. W. 2007. A review of selected species of Lymantria Hübner [1819] (Lepidoptera: Noctuidae: Lymantriinae) from subtropical and temperate regions of Asia, including the descriptions of three new species, some potentially invasive to North America. Washington, D.C.: USDA, Forest Health Technology Enterprise Team, Technology Transfer FHTET-2006-07, 223 p.

  • Rabaglia, R., Duerr, D., Acciavatti, R., and Ragenovich, I. 2008. Early detection and rapid response for non-native bark and ambrosia beetles. Washington DC, USA: USDA Forest Service, Forest Health Protection. http://www.fs.fed.us/foresthealth/publications/EDRRProjectReport.pdf. Retrieved 11 April 2012.

  • Régnière, J., Nealis, V., and Porter, K. 2009. Climate suitability and management of the gypsy moth invasion into Canada. Biol. Invas. 11:135–148.

    Article  Google Scholar 

  • Schwalbe, C. P. and Mastro, V. C. 1988. Multispecific trapping techniques for exotic pest detection. Agric. Ecosyst. Environ. 21:43–51.

    Article  Google Scholar 

  • Sharov, A. A., Liebhold, A. M., and Roberts, E. A. 1998. Optimizing the use of barrier zones to slow the spread of gypsy moth (Lepidoptera: Lymantriidae) in North America. J. Econ. Entomol. 91:165–174.

    Google Scholar 

  • Sharov, A. A., Leonard, D., Liebhold, A. M., Roberts, E. A., and Dickerson, W. 2002. “Slow the Spread” A national program to contain the gypsy moth. J. For. 100:30–36.

    Google Scholar 

  • Stephens, A. E. A., Suckling, D. M., and El-Sayed, A. M. 2008. Odour quality discrimination for behavioural antagonist compounds in three tortricid species. Entomol. Exp. Appl. 127:176–183.

    Article  CAS  Google Scholar 

  • Symonds, M. R. E. and Elgar, M. A. 2008. The evolution of pheromone diversity. Trends Ecol. Evol. 23:220–228.

    Article  PubMed  Google Scholar 

  • Tobin, P. C., Klein, K. T., and Leonard, D. S. 2009. Gypsy moth (Lepidoptera: Lymantriidae) flight behavior and phenology based on field-deployed automated pheromone-baited traps. Environ. Entomol. 38:1555–1562.

    Article  PubMed  Google Scholar 

  • United States Forest Service. 2012. The gypsy moth digest. http://www.na.fs.fed.us/fhp/gm/. Retrieved 11 April 2012.

  • Witzgall, P., Kirsch, P., and Cork, A. 2010. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36:80–100.

    Article  PubMed  CAS  Google Scholar 

  • Wylie, F. R., Griffiths, M., and King, J. 2008. Development of hazard site surveillance programs for forest invasive species: a case study from Brisbane, Australia. Austral. For. 71(3):229–235.

    Google Scholar 

Download references

Acknowledgments

We thank Ashraf El-Sayed and Lee-Anne Manning for advice on pheromone compounds and two anonymous reviewers for comments on the manuscript. Funding from the New Zealand Foundation for Research Science and Technology (contract C02X0501, the ‘Better Border Biosecurity’ programme, www.b3nz.org) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard G. Brockerhoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1a

(DOCX 41 kb)

Supplementary 1b

(DOCX 42 kb)

Supplementary 2

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockerhoff, E.G., Suckling, D.M., Roques, A. et al. Improving the Efficiency of Lepidopteran Pest Detection and Surveillance: Constraints and Opportunities for Multiple-Species Trapping. J Chem Ecol 39, 50–58 (2013). https://doi.org/10.1007/s10886-012-0223-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0223-6

Keywords

Navigation