Skip to main content

Advertisement

Log in

Reduced Mating Success of Female Tortricid Moths Following Intense Pheromone Auto-Exposure Varies with Sophistication of Mating System

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Mating disruption is a valuable tool for the management of pest lepidopteran species in many agricultural crops. Many studies have addressed the effect of female pheromone on the ability of males to find calling females but, so far, fewer have addressed the effect of pheromone on the mating behavior of females. We hypothesized that mating of female moth species may be adversely affected following sex pheromone auto-exposure, due to abnormal behavioral activity and/or antennal sensitivity. Our results indicate that, for Grapholita molesta and Pandemis pyrusana females, copulation, but not calling, was reduced following pre-exposure to sex pheromone. In contrast, for Cydia pomonella and Choristoneura rosaceana, sex pheromone pre-exposure did not affect either calling or copulation propensity. Adaptation of female moth antennae to their own sex pheromone, following sex pheromone auto-exposure, as measured by electroantennograms, occurred in a species for which identical exposure reduced mating success (G. molesta) and in a species for which such exposure did not affect mating success (C. rosaceana). These results suggest that pre-exposure of female moths of certain species to sex pheromone may further contribute to the success of pheromone-based mating disruption. Therefore, we conclude that, in some species, mating disruption may include a secondary mechanism that affects the mating behavior of female moths, in addition to that of males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ansebo L., Ignell R., Lofqvist J., and Hansson B. S. 2005. Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). J. Insect Physiol. 51:1066–1074.

    Article  PubMed  CAS  Google Scholar 

  • Anton S., Varela N., Avilla J., and Gemeno C. 2011. Ordinary glomeruli in the antennal lobe of male and female tortricid moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae) process sex pheromone and host-plant volatiles. J. Exp. Biol. 214:637–645.

    Article  PubMed  Google Scholar 

  • Baker T. C. and Cardé R. T. 1979a. Courtship behavior of the oriental fruit moth (Grapholitha molesta)(Lepidoptera-Tortricidae)- experimental analysis and consideration of the role of sexual selection in the evolution of courtship pheromones in the Lepidoptera. Ann. Entomol. Soc. Am. 72:173–188.

    Google Scholar 

  • Baker T. C. and Cardé R. T. 1979b. Analysis of pheromone-mediated behaviors in male Grapholitha molesta, the oriental fruit moth (Lepidoptera, Tortricidae). Environ. Entomol. 8:956–968.

    CAS  Google Scholar 

  • Baker T. C., Willis M. A., Haynes K. F., and Phelan P. L. 1985. A Pulsed Cloud of Sex Pheromone Elicits Upwind Flight in Male Moths. Blackwell Publishing Ltd. p 257–265.

  • Bates S. L., Zhao J. Z., Roush R. T., and Shelton A. M. 2005. Insect resistance management in GM crops: past, present and future. Nat. Biotechnol. 23:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Birch M. C. 1977. Response of Both Sexes of Trichoplusia ni (Lepidoptera: Noctuidae) to Virgin Females and to Synthetic Pheromone. Blackwell Publishing Ltd. p 99–104.

  • Cardé R. T. and Minks A. K. 1995. Control of moth pests by mating disruption - successes and constraints. Annu. Rev. Entomol. 40:559–585.

    Article  Google Scholar 

  • Castrovillo P. J. and Cardé R. T. 1980. Male codling moth (Laspeyresia pomonella) (Lepidoptera, Tortricidae) orientation to visual cues in the presence of pheromone and sequences of courtship behaviors. Ann. Entomol. Soc. Am. 73:100–105.

    Google Scholar 

  • Curkovic T., Brunner J. F., and Landolt P. J. 2006. Courtship behavior in Choristoneura rosaceana and Pandemis pyrusana (Lepidoptera : Tortricidae). Ann. Entomol. Soc. Am. 99:617–624.

    Article  Google Scholar 

  • Daniel P. C., Fine J. B., Derby C. D., and Girardot M. N. 1994. Non-reciprocal cross-adaptation of spiking responses of individual olfactory receptor neurons of spiny lobsters: evidence for two excitatory transduction pathways. Brain Res. 643:136–149.

    Article  PubMed  CAS  Google Scholar 

  • Evenden M. L. and Haynes K. F. 2001. Potential for the evolution of resistance to pheromone-based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Entomol. Exp. Appl. 100:131–134.

    Article  Google Scholar 

  • Gökçe, A., Stelinski, L. L., Gut, L. J., and Whalon, M. E. 2007. Comparative behavioral and EAG responses of female obliquebanded and redbanded leafroller moths (Lepidoptera: Tortricidae) to their sex pheromone components. Eur. J. Entomol. 104: 187–194

    Google Scholar 

  • Gottfried J. A., Winston J. S., and Dolan R. J. 2006. Dissociable Codes of Odor Quality and Odorant Structure in Human Piriform Cortex. Neuron 49:467–479.

    Article  PubMed  CAS  Google Scholar 

  • Gut, L. J., Stelinski, L. L., Thompson, D. R., and Miller, J. R. 2004. Behavior modifying chemicals: prospects and constraints in IPM, pp. 73–121, in O. Koul, G. S. Dhaliwal, and G. Cuperus (eds.). Integrated Pest Management: Potential, Constraints, and Challenges. CABI, Wallingford, UK.

    Chapter  Google Scholar 

  • Hill A. S. and Roelofs W. L. 1979. Sex-pheromone components of the obliquebanded leafroller moth, Choristoneura rosaceana (Lepidoptera, Tortricidae). J. Chem. Ecol. 5:3–11.

    Article  CAS  Google Scholar 

  • Judd G. J. R., Gardiner M. G. T., Delury N. C., and Karg G. 2005. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E,E)-8,10-dodecadien-1-ol following various pre-exposure regimes. Blackwell Science Ltd. p 65–78.

  • Marsh D., Kennedy J. S., and Ludlow A. R. 1978. An analysis of anemotactic zigzagging flight in male moths stimulated by pheromone. Blackwell Publishing Ltd. p 221–240.

  • Miller J., Gut L., De Lame F., and Stelinski L. 2006. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part I): Theory. J. Chem. Ecol. 32:2089–2114.

    Article  PubMed  CAS  Google Scholar 

  • Nishida R., Baker T. C., and Roelofs W. L. 1982. Hairpencil pheromone components of male oriental fruit moths, Grapholitha molesta. J. Chem. Ecol. 8:947–959.

    Article  CAS  Google Scholar 

  • Palanaswamy P. and Seabrook W. D. 1978. Behavioral responses of the female eastern spruce budworm Choristoneura fumiferana; (Lepidoptera, Tortricidae) to the sex pheromone of her own species. J. Chem. Ecol. 4:649–655.

    Article  CAS  Google Scholar 

  • Pfeiffer D. G., Kaakeh W., Killian J. C., Lachance M. W., and Kirsch P. 1993. Mating disruption for control of damage by codling moth in Virginia apple orchards. Entomol. Exp. Appl. 67:57–64.

    Article  Google Scholar 

  • Pimentel D., Harman R., Pacenza M., Pecarsky J., and Pimentel M. 1994. Natural resources and an optimum human population. Popul. Environ. 15:347–369.

    Article  Google Scholar 

  • Roelofs W. L., Comeau A., and Selle R. 1969. Sex pheromone of the oriental fruit moth. Nature 224:723–723.

    Article  CAS  Google Scholar 

  • Roelofs W. L., Lagier R. F., and Hoyt S. C. 1977. Sex pheromone of the moth, Pandemis pyrusana. Environ. Entomol. 6:353–354.

    CAS  Google Scholar 

  • Sas Institutes. 2005. SAS users guide. SAS Institute. Cary, NC.

  • Schneider D., Schulz S., Priesner E., Ziesmann J., and Francke W. 1998. Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J. Comp. Physiol. A 182:153–161.

    Article  CAS  Google Scholar 

  • Shorey H. H. and Hale R. L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J. Econ. Entomol. 58:522–524.

    Google Scholar 

  • Stelinski L. L., Gut L. J., and Miller J. R. 2003a. Concentration of air-borne pheromone required for long-lasting peripheral adaptation in the obliquebanded leafroller, Choristoneura rosaceana. Physiol. Entomol. 28:97–107.

    Article  CAS  Google Scholar 

  • Stelinski, L. L., Miller, J. R., and Gut, L. J. 2003b. Presence of long-lasting peripheral adaptation in the obliquebanded leafroller, Choristoneura rosaceana and absence of such adaptation in the redbanded leafroller, Argyrotaenia velutinana. J. Chem. Ecol. 29:403–422.

    Article  Google Scholar 

  • Stelinski L. L., Gut L. J., Vogel K. J., and Miller J. R. 2004. Behaviors of naive vs. pheromone-exposed leafroller moths in plumes from high-dosage pheromone dispensers in a sustained-flight wind tunnel: implications for mating disruption of these species. J. Insect Behav. 17:533–554.

    Article  Google Scholar 

  • Stelinski L. L., Gut L. J., and Miller J. R. 2006a. Orientational behaviors and EAG responses of male codling moth after exposure to synthetic sex pheromone from various dispensers. J. Chem. Ecol. 32:1527–1538.

    Article  PubMed  CAS  Google Scholar 

  • Stelinski L. L., Ilichev A. L., and Gut L. J. 2006b. Antennal and behavioral responses of virgin and mated oriental fruit moth (Lepidoptera : Tortricidae) females to their sex pheromone. Ann. Entomol. Soc. Am. 99:898–904.

    Article  CAS  Google Scholar 

  • Stelinski L. L., Ilichev A. L., and Gut L. J. 2009. Efficacy and release rate of reservoir pheromone dispensers for simultaneous mating disruption of codling moth and oriental fruit moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 102:315–323.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H., Imanaka Y., Hirono J., and Kurahashi T. 2003. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules. J. Gen. Physiol. 122:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Trona F., Anfora G., Bengtsson M., Witzgall P., and Ignell R. 2010. Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella. J. Exp. Biol. 213:4291–4303.

    Article  PubMed  CAS  Google Scholar 

  • Vickers R. A., Rothschild G. H. L., and Jones E. L. 1985. Control of the oriental fruit moth, Cydia molesta (Busek) (Lepidoptera: Tortricidae), at a district level by mating disruption with synthetic female pheromone. Bull. Entomol. Res. 75:625–634.

    Article  CAS  Google Scholar 

  • Witzgall P., Stelinski L., Gut L., and Thomson D. 2008. Codling moth management and chemical ecology. Annu. Rev. Entomol. 53:503–522.

    Article  PubMed  CAS  Google Scholar 

  • Witzgall P., Kirsch P., and Cork A. 2011. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36:80–100.

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Brueher, E. Steere, and A. Hoyte for assistance with transition and maintenance of insect colonies at various stages of the project and help with design and construction of assay chambers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz L. Stelinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhns, E.H., Pelz-Stelinski, K. & Stelinski, L.L. Reduced Mating Success of Female Tortricid Moths Following Intense Pheromone Auto-Exposure Varies with Sophistication of Mating System. J Chem Ecol 38, 168–175 (2012). https://doi.org/10.1007/s10886-012-0076-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0076-z

Keywords

Navigation