Skip to main content

Advertisement

Log in

Bacterial Attraction and Quorum Sensing Inhibition in Caenorhabditis elegans Exudates

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABALLAY, A., and AUSUBEL, F. M. 2002. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol. 5:97–101.

    Article  PubMed  CAS  Google Scholar 

  • ADLER, J. 1966. Chemotaxis in bacteria. Science. 153:708–716.

    Article  PubMed  CAS  Google Scholar 

  • ADLER, J., HAZELBAUER, G. L., and DAHL, M. M. 1973. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115:824–847.

    PubMed  CAS  Google Scholar 

  • ANDERSEN, J. B., HEYDORN, A., HENTZER, M., EBERL, L., GEISENBERGER, O., CHRISTENSEN, B. B., MOLIN, S., and GIVSKOV, M. 2001. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67:575–585.

    Article  PubMed  CAS  Google Scholar 

  • AVERY, L., and SHTONDA, B. B. 2003. Food transport in the C. elegans pharynx. J. Exp. Biol. 206:2441–2457.

    Article  PubMed  Google Scholar 

  • BACILIO-JIMÉNEZ, M., AGUILAR-FLORES, S., VENTURA-ZAPATA, E., PEREZ-CAMPOS, E., BOUQUELET, S., and ZENTENO, E. 2003. Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil. 249:271–277.

    Article  Google Scholar 

  • BAIS, H. P., PRITHIVIRAJ, B., JHA, A. K., AUSUBEL, F. M., and VIVANCO, J. M. 2005. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature. 434:217–221.

    Article  PubMed  CAS  Google Scholar 

  • BARRIERE, A., and FELIX, M. A. 2006. Isolation of C. elegans and related nematodes. WormBook. 1–9.

  • BAUER, A. W., KIRBY, W. M., SHERRIS, J. C., and TURCK, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45:493–496.

    PubMed  CAS  Google Scholar 

  • BEALE, E., LI, G., TAN, M. W., and RUMBAUGH, K. P. 2006. Caenorhabditis elegans senses bacterial autoinducers. Appl. Environ. Microbiol. 72:5135–5137.

    Article  PubMed  CAS  Google Scholar 

  • BERTANI, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62:293–300.

    PubMed  CAS  Google Scholar 

  • BJARNSHOLT, T., and GIVSKOV, M. 2007. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362:1213–1222.

    Article  PubMed  CAS  Google Scholar 

  • BRENNER, S. 1974. Genetics of Caenorhabditis elegans. Genetics. 77:71–94.

    PubMed  CAS  Google Scholar 

  • BREY, W. W., EDISON, A. S., NAST, R. E., ROCCA, J. R., SAHA, S., and WITHERS, R. S. 2006. Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. J. Magn. Reson. 179:290–293.

    Article  PubMed  CAS  Google Scholar 

  • BRÜSCHWEILER, R., and ZHANG, F. 2004. Covariance nuclear magnetic resonance spectroscopy. J. Chem. Phys. 120:5253–5260.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R. A., FUJITA, M., SCHROEDER, F. C., and CLARDY, J. 2007. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3:420–422.

    Article  PubMed  CAS  Google Scholar 

  • BUTCHER, R. A., RAGAINS, J. R., KIM, E., and CLARDY, J. 2008. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc. Natl. Acad. Sci. U. S. A. 105:14288–14292.

    Article  PubMed  Google Scholar 

  • CHALFIE, M., TU, Y., EUSKIRCHEN, G., WARD, W. W., and PRASHER, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science. 263:802–805.

    Article  PubMed  CAS  Google Scholar 

  • CLARK, D. J., and MAAOLE, O. 1967. DNA replication and the division cycle in Escherichia coli. J. Mol. Biol. 23:99–112.

    Article  CAS  Google Scholar 

  • COHEN, S. A., and MICHAUD, D. P. 1993. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal. Biochem. 211:279–287.

    Article  PubMed  CAS  Google Scholar 

  • DARBY, C., COSMA, C. L., THOMAS, J. H., and MANOIL, C. 1999. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 96:15202–15207.

    Article  PubMed  CAS  Google Scholar 

  • DELAGLIO, F., GRZESIEK, S., VUISTER, G. W., ZHU, G., PFEIFER, J., and BAX, A. 1995. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 6:277–293.

    Article  PubMed  CAS  Google Scholar 

  • DONG, Y. H., WANG, L. Y., and ZHANG, L. H. 2007. Quorum-quenching microbial infections: mechanisms and implications. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362:1201–1211.

    Article  PubMed  CAS  Google Scholar 

  • ELLIS, R. E., YUAN, J. Y., and HORVITZ, H. R. 1991. Mechanisms and Functions of Cell-Death. Annu. Rev. Cell Biology. 7:663–698.

    CAS  Google Scholar 

  • FIEHN, O., KOPKA, J., DÈORMANN, P., ALTMANN, T., TRETHEWEY, R. N., and WILLMITZER, L. 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18:1157–1161.

    Article  PubMed  CAS  Google Scholar 

  • FIRE, A., XU, S. Q., MONTGOMERY, M. K., KOSTAS, S. A., DRIVER, S. E., and MELLO, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  • FOTHERGILL, J. L., PANAGEA, S., HART, C. A., WALSHAW, M. J., PITT, T. L., and WINSTANLEY, C. 2007. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol. 7:45.

    Article  PubMed  CAS  Google Scholar 

  • GIVSKOV, M., De NYS, R., MANEFIELD, M., GRAM, L., MAXIMILIEN, R., EBERL, L., MOLIN, S., STEINBERG, P. D., and KJELLEBERG, S. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178:6618–6622.

    PubMed  CAS  Google Scholar 

  • GOLDEN, J. W., and RIDDLE, D. L. 1982. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science. 218:578–580.

    Article  PubMed  CAS  Google Scholar 

  • HEDBLOM, M. L., and ADLER, J. 1983. Chemotactic response of Escherichia coli to chemically synthesized amino acids. J. Bacteriol. 155:1463–1466.

    PubMed  CAS  Google Scholar 

  • HUIXIN, L., INUBUSHI, K., and MIWA, J. 2001. Effects of temperature on population growth and n mineralization of soil bacteria and a bacterial-feeding nematode. Microb. Environ. 16:141–146.

    Article  Google Scholar 

  • JAFFE, H., HUETTEL, R. N., DEMILO, A. B., HAYS, D. K., and REBOIS, R. V. 1989. Isolation and identification of a compound from soybean cyst nematode, Heterodera glycines, with sex pheromone activity. J. Chem. Ecol. 15:2031–2043.

    Article  CAS  Google Scholar 

  • JEONG, P. Y., JUNG, M., YIM, Y. H., KIM, H., PARK, M., HONG, E., LEE, W., KIM, Y. H., KIM, K., and PAIK, Y. K. 2005. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature. 433:541–545.

    Article  PubMed  CAS  Google Scholar 

  • JOHNSON, B. A. 2004. Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278:313–352.

    PubMed  CAS  Google Scholar 

  • JOHNSON, R. A., and WICHERN, D. W. 2001. Applied Multivariate Statistical Analysis. Prentice Hall.

  • JOHNSTONE, I. L. 1999. Molecular Biology, pp. 201–225, in I. A. Hope (ed.). C. elegans A Practical Approach. Oxford University Press, New York.

    Google Scholar 

  • KAMILOVA, F., KRAVCHENKO, L. V., SHAPOSHNIKOV, A. I., AZAROVA, T., MAKAROVA, N., and LUGTENBERG, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19:250–256.

    Article  PubMed  CAS  Google Scholar 

  • KUMAR, R., BHATIA, R., KUKREJA, K., BEHL, R. K., DUDEJA, S. S., and NARULA, N. 2007. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J. Basic Microbiol. 47:436–439.

    Article  PubMed  CAS  Google Scholar 

  • LUGTENBERG, B. J., KRAVCHENKO, L. V., and SIMONS, M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1:439–446.

    Article  PubMed  CAS  Google Scholar 

  • MARKLEY, J. L., ANDERSON, M. E., CUI, Q., EGHBALNIA, H. R., LEWIS, I. A., HEGEMAN, A. D., LI, J., SCHULTE, C. F., SUSSMAN, M. R., WESTLER, W. M., ULRICH, E. L., and ZOLNAI, Z. 2007. New bioinformatics resources for metabolomics. Pac. Symp. Biocomput.:157–168.

  • MESIBOV, R., and ADLER, J. 1972. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112:315–326.

    PubMed  CAS  Google Scholar 

  • MILLER, M. B., and BASSLER, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–199.

    Article  PubMed  CAS  Google Scholar 

  • MOLINA, L., RAMOS, C., DUQUE, E., RONCHEL, M. C., GARCIA, J. M., WYKE, L., and RAMOS, J. L. 2000. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol. Biochem. 32:315–321.

    Article  CAS  Google Scholar 

  • MOULTON, R. C., and MONTIE, T. C. 1979. Chemotaxis by Pseudomonas aeruginosa. J. Bacteriol. 137:274–280.

    PubMed  CAS  Google Scholar 

  • PARK, S., WOLANIN, P. M., YUZBASHYAN, E. A., LIN, H., DARNTON, N. C., STOCK, J. B., SILBERZAN, P., and AUSTIN, R. 2003. Influence of topology on bacterial social interaction. Proc. Natl. Acad. Sci. U. S. A. 100:13910–13915.

    Article  PubMed  CAS  Google Scholar 

  • PEARSON, J. P., PESCI, E. C., and IGLEWSKI, B. H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179:5756–5767.

    PubMed  CAS  Google Scholar 

  • PERSSON, T., HANSEN, T. H., RASMUSSEN, T. B., SKINDERSO, M. E., GIVSKOV, M., and NIELSEN, J. 2005. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org. Biomol. Chem. 3:253–262.

    Article  PubMed  CAS  Google Scholar 

  • PUNGALIYA, C., SRINIVASAN, J., FOX, B. W., MALIK, R. U., LUDEWIG, A. H., STERNBERG, P. W., and SCHROEDER, F. C. 2009. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 106:7708–7713.

    Article  PubMed  Google Scholar 

  • RAMOS-GONZÁLEZ, M. I., CAMPOS, M. J., and RAMOS, J. L. 2005. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo [corrected] expression technology capture and identification of root-activated promoters. J. Bacteriol. 187:4033–4041.

    Article  PubMed  CAS  Google Scholar 

  • RASMUSSEN, T. B., and GIVSKOV, M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296:149–161.

    Article  PubMed  CAS  Google Scholar 

  • RASMUSSEN, T. B., BJARNSHOLT, T., SKINDERSOE, M. E., HENTZER, M., KRISTOFFERSEN, P., KOTE, M., NIELSEN, J., EBERL, L., and GIVSKOV, M. 2005a. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J. Bacteriol. 187:1799–1814.

    Article  PubMed  CAS  Google Scholar 

  • RASMUSSEN, T. B., SKINDERSOE, M. E., BJARNSHOLT, T., PHIPPS, R. K., CHRISTENSEN, K. B., JENSEN, P. O., ANDERSEN, J. B., KOCH, B., LARSEN, T. O., HENTZER, M., EBERL, L., HOIBY, N., and GIVSKOV, M. 2005b. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology. 151:1325–1340.

    Article  PubMed  CAS  Google Scholar 

  • ROBINETTE, S. L., ZHANG, F., BRÜSCHWEILER-LI, L., and BRÜSCHWEILER, R. 2008. Web Server Based Complex Mixture Analysis by NMR. Anal. Chem. 80:3606–3611.

    Article  PubMed  CAS  Google Scholar 

  • ROESSNER, U., WAGNER, C., KOPKA, J., TRETHEWEY, R. N., and WILLMITZER, L. 2000. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23:131–142.

    Article  PubMed  CAS  Google Scholar 

  • SEAVEY, B. R., FARR, E. A., WESTLER, W. M., and MARKLEY, J. L. 1991. A relational database for sequence-specific protein NMR data. J. Biomol. NMR. 1:217–236.

    Article  PubMed  CAS  Google Scholar 

  • SHAKA, A. J., LEE, C. J., and PINES, A. 1988. Iterative schemes for bilinear operators; application to spin decoupling. J. Magn. Reson. 77:274–293.

    Google Scholar 

  • SHTONDA, B. B., and AVERY, L. 2006. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209:89–102.

    Article  PubMed  Google Scholar 

  • SIMON, J. M., and STERNBERG, P. W. 2002. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 99:1598–1603.

    Article  PubMed  CAS  Google Scholar 

  • SINGH, T., and ARORA, D. K. 2001. Motility and chemotactic response of Pseudomonas fluorescens toward chemoattractants present in the exudate of Macrophomina phaseolina. Microbiol. Res. 156:343–351.

    Article  PubMed  CAS  Google Scholar 

  • SNYDER, D. A., ZHANG, F., ROBINETTE, S. L., BRÜSCHWEILER-LI, L., and BRÜSCHWEILER, R. 2008. Non-negative matrix factorization of two-dimensional NMR spectra: Application to complex mixture analysis. J. Chem. Phys. 128:052313.

    Article  PubMed  CAS  Google Scholar 

  • SRINIVASAN, J., KAPLAN, F., AJREDINI, R., ZACHARIAH, C., ALBORN, H. T., TEAL, P. E., MALIK, R. U., EDISON, A. S., STERNBERG, P. W., and SCHROEDER, F. C. 2008. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature. 454:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • STIERNAGLE, T. 1999. Maintenance of C. elegans, pp. 51–67, in I. A. Hope (ed.). C. elegans A Practical Approach. Oxford University Press, New York.

    Google Scholar 

  • STOVER, C. K., PHAM, X. Q., ERWIN, A. L., MIZOGUCHI, S. D., WARRENER, P., HICKEY, M. J., BRINKMAN, F. S., HUFNAGLE, W. O., KOWALIK, D. J., LAGROU, M., GARBER, R. L., GOLTRY, L., TOLENTINO, E., WESTBROCK-WADMAN, S., YUAN, Y., BRODY, L. L., COULTER, S. N., FOLGER, K. R., KAS, A., LARBIG, K., LIM, R., SMITH, K., SPENCER, D., WONG, G. K., WU, Z., PAULSEN, I. T., REIZER, J., SAIER, M. H., HANCOCK, R. E., LORY, S., and OLSON, M. V. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  • SULSTON, J. E., SCHIERENBERG, E., WHITE, J. G., and THOMSON, J. N. 1983. The Embryonic-Cell Lineage of the Nematode Caenorhabditis elegans. Dev. Biol. 100:64–119.

    Article  PubMed  CAS  Google Scholar 

  • TRBOVIC, N., SMIRNOV, S., ZHANG, F., and BRÜSCHWEILER, R. 2004. Covariance NMR spectroscopy by singular value decomposition. J. Magn. Reson. 171:277–283.

    Article  PubMed  CAS  Google Scholar 

  • TSO, W. W., and ADLER, J. 1974. Negative chemotaxis in Escherichia coli. J. Bacteriol. 118:560–576.

    PubMed  CAS  Google Scholar 

  • Van Der DRIFT, C., DUIVERMAN, J., BEXKENS, H., and KRIJNEN, A. 1975. Chemotaxis of a motile Streptococcus toward sugars and amino acids. J. Bacteriol. 124:1142–1147.

    PubMed  CAS  Google Scholar 

  • WAGNER, C., SEFKOW, M., and KOPKA, J. 2003. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry. 62:887–900.

    Article  PubMed  CAS  Google Scholar 

  • WALKER, T. S., BAIS, H. P., DEZIEL, E., SCHWEIZER, H. P., RAHME, L. G., FALL, R., and VIVANCO, J. M. 2004. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134:320–331.

    Article  PubMed  CAS  Google Scholar 

  • WHITE, J. G., SOUTHGATE, E., THOMSON, J. N., and BRENNER, S. 1986. The Structure of the Nervous-System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B-Biol. Sci. 314:1–340.

    Article  Google Scholar 

  • WHITE, J. Q., NICHOLAS, T. J., GRITTON, J., TRUONG, L., DAVIDSON, E. R., and JORGENSEN, E. M. 2007. The sensory circuitry for sexual attraction in C. elegans males. Curr. Biol. 17:18471857.

    Article  PubMed  CAS  Google Scholar 

  • WILLIAMS, P., WINZER, K., CHAN, W. C., and CAMARA, M. 2007. Look who’s talking: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362:1119–1134.

    Article  PubMed  CAS  Google Scholar 

  • WILSON, R., AINSCOUGH, R., ANDERSON, K., BAYNES, C., BERKS, M., BURTON, J., CONNELL, M., BONFIELD, J., COPSEY, T., COOPER, J., COULSON, A., CRAXTON, M., DEAR, S., DU, Z., DURBIN, R., FAVELLO, A., FRASER, A., FULTON, L., GARDNER, A., GREEN, P., HAWKINS, T., HILLIER, L., JIER, M., JOHNSTON, L., JONES, M., KERSHAW, J., KIRSTEN, J., LAISSTER, N., LATREILLE, P., LLOYD, C., MORTIMORE, B., OCALLAGHAN, M., PARSONS, J., PERCY, C., RIFKEN, L., ROOPRA, A., SAUNDERS, D., SHOWNKEEN, R., SIMS, M., SMALDON, N., SMITH, A., SMITH, M., SONNHAMMER, E., STADEN, R., SULSTON, J., THIERRYMIEG, J., THOMAS, K., VAUDIN, M., VAUGHAN, K., WATERSTON, R., WATSON, A., WEINSTOCK, L., WILKINSONSPROAT, J., and WOHLDMAN, P. 1994. 2.2 Mb of Contiguous Nucleotide-Sequence from Chromosome-Iii of C. elegans. Nature. 368:32–38.

    Article  PubMed  CAS  Google Scholar 

  • YU, H. S., and ALAM, M. 1997. An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol. Lett. 156:265–269.

    Article  PubMed  CAS  Google Scholar 

  • YUAN, J. Y., SHAHAM, S., LEDOUX, S., ELLIS, H. M., and HORVITZ, H. R. 1993. The C. elegans Cell-Death Gene Ced-3 Encodes a Protein Similar to Mammalian Interleukin-1-Beta-Converting Enzyme. Cell. 75:641–652.

    Article  PubMed  CAS  Google Scholar 

  • ZAHRADNÍČKOVÁ, H., HUŠEK, P., ŠIMEK, P., HARTVICH, P., MARŠÁLEK, B., and HOLOUBEK, I. 2007. Determination of D- and L-amino acids produced by cyanobacteria using gas chromatography on Chirasil-Val after derivatization with pentafluoropropyl chloroformate. Anal. Bioanal. Chem. 388:1815–1822.

    Article  PubMed  CAS  Google Scholar 

  • ZHANG, F., and BRÜSCHWEILER, R. 2007. Robust deconvolution of complex mixtures by covariance TOCSY spectroscopy. Angew. Chem. Int. Ed. 46:2639–2642.

    Article  CAS  Google Scholar 

  • ZHANG, F., DOSSEY, A. T., ZACHARIAH, C., EDISON, A. S., and BRÜSCHWEILER, R. 2007. Strategy for automated analysis of dynamic metabolic mixtures by NMR. Application to an insect venom. Anal. Chem. 79:7748–7752.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Funding was provided through the Human Frontier Science Program (ASE), the NIH (1R01GM085285-01 to ASE), the NSF (MCB-0429968 to SR), and the NSF funded National High Magnetic Field Laboratory (DMR-0654118). We thank Dr Michael Givskov for providing the GFP-based AHL sensor system and QSIS1 reporter system. We thank Drs. Paul Sternberg and Jagan Srinivasan for helping to establish biological activity of worm water and Drs. David Powell, Mario de Bono, Frank Schroeder, and Peter Teal for helpful ideas in the worm water protocol and Alex K. Brasher for his help collecting worm exudates. NMR data were collected in the University of Florida AMRIS Facility, and we thank Jim Rocca for his help with NMR data collection and interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur S. Edison.

Additional information

Author contributions

Fatma Kaplan and Dayakar V. Badri contributed equally and led the study; Fatma Kaplan, Aaron T. Dossey, Ramadan Ajredini, Hans Alborn and Michael Stadler intellectually contributed to the worm exudate protocol which was developed in the ASE laboratory; Fatma Kaplan, Ramadan Ajredini, and Rathika Nimalendran collected exudates; Dayakar V. Badri conducted bacterial bioassays; Hans Alborn collected LC-MS data; Fatma Kaplan and Cherian Zachariah collected NMR data; Fengli Zhang, Steven L. Robinette and Rafael Brüschweiler did COLMAR analysis; Fatma Kaplan, Cherian Zachariah, Michael Stadler, and Aaron T. Dossey manually analyzed NMR data. Sanja Roje and Francisco Sandoval analyzed amino acids by HPLC; Lanfang H. Levine analyzed young adult exudates by GC-MS; Wei Zhao did principle component analysis; Fatma Kaplan, Dayakar V. Badri, Arthur S. Edison and Jorge M. Vivanco analyzed the data and wrote the paper with help from the entire team.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOC 363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, F., Badri, D.V., Zachariah, C. et al. Bacterial Attraction and Quorum Sensing Inhibition in Caenorhabditis elegans Exudates. J Chem Ecol 35, 878–892 (2009). https://doi.org/10.1007/s10886-009-9670-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9670-0

Keywords

Navigation