Skip to main content

Advertisement

Log in

Stigmasterol and Cholesterol Regulate the Expression of Elicitin Genes in Phytophthora sojae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Sterol acquisition by soilborne plant pathogens of the genus Phytophthora is presumed to involve extracellular proteins belonging to class-I elicitins. However, little is known about the relationship between sterol availability and elicitin secretion. The objective of this study was to determine the expression of class-I elicitin genes in Phytophthora sojae when grown in a medium containing stigmasterol or cholesterol. P. sojae growth was stimulated by nanomolar concentrations of stigmasterol and cholesterol, which also resulted in the down-regulation of its elicitin genes over time when expression profiles were monitored using real time Reverse Transcription Polymerase Chain Reaction (RT-PCR). The down-regulation of elicitin genes in response to the two sterols also coincided with a reduction in the amount of elicitins detected in spent filtrates. Our study is the first to show the influence of sterols on elicitin gene expression in Phytophthora, which is important with respect to the ecology of elicitin secretion as sterol carrier proteins in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baillieul, F., Ruffray, P. and Kauffmann, S. 2003. Molecular cloning and biological activity of α-, β-, γ-megaspermin, three elicitins secreted by Phytophthora megasperma H20. Plant Physiology 131:155–166.

    Article  PubMed  CAS  Google Scholar 

  • Becker, J., Nagel, S., and Tenhaken, R. 2000. Cloning, expression and characterization of protein elicitors from the soyabean pathogenic fungus Phytophthora sojae. Journal of Phytopathology 148:161–167.

    Article  CAS  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bull, I. D., Van Bergen, P. F., Nott, C. J., Poulton, P. R. and Evershed, R. P. 2000. Organic geochemical studies of soils from the Rothamsted experiments -V. The fate of lipids in different long-term experiments. Organic Geochemistry 31:389–408.

    Article  CAS  Google Scholar 

  • Churngchow, N, and Rattarasarn, M. 2000. The elicitin secreted by Phytophthora palmivora a rubber tree pathogen. Phytochemistry 54:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Colas V., Conrod, S., Venard, P., Keller, H., Ricci, P. and Panabiéres, F. 2001. Elicitin genes expressed in vitro by certain tobacco isolates of Phytophthora parasitica are down regulated during compatible interactions. Molecular Plant-microbe Interactions: MPMI 14:326–335.

    Article  PubMed  CAS  Google Scholar 

  • Elliot, C. G., and Knights, B. A. 1981. Differential metabolism of cholesterol and sitosterol by Phytophthora cactorum. Lipids 16:142–145.

    Article  Google Scholar 

  • Fenner, G. P., Patterson, G. W., and Koines, P. M. 1986. Sterol composition during the life cycle of the soybean and the squash. Lipids 21:48–51.

    Article  CAS  Google Scholar 

  • Hendrix, J. W. 1975. Cholesterol uptake and metabolism by Pythium and Phytophthora species. Mycologia 67:663–666.

    Article  Google Scholar 

  • Jiang, R. H. Y., Tyler, B. M., Whisson, S. C., Hardham, R.A., and Govers, F. 2006a. Ancient origin of elicitin gene clusters in Phytophthora genomes. Molecular Biology and Evolution 23:338–351.

    Article  PubMed  CAS  Google Scholar 

  • Jiang R. H. Y., Tyler, B. M., and Govers, F. 2006b. Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions. Molecular Plant-microbe Interactions: MPMI 19:1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun, S. 2001. Nonhost resistance to Phytophthora: novel prospects for a classical problem. Current Opinion in Plant Biology 4:295–300.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun, S., Lindqvist, H., and Govers, F. 1997a. A Novel Class of Elicitin-like Genes from Phytophthora infestans. Molecular Plant-microbe Interactions: MPMI 10:1028–1030.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun, S., West, P. V., De Jong, A. J., De Groot, K. E., Vleeshouwers, G. A. A., and Govers, F. 1997b. A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Molecular Plant-microbe Interactions 10:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Lascombe, M. B., Ponchet, M., Cardin, L., Milat, M.-L., Blein, J.-P., and Prangé, T. 2004. Purification, crystallization and preliminary X-ray studies of sylvactin, an elicitin-like protein from Pythium sylvaticum. Acta Crystallographica D60:362–364.

    CAS  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-∆∆CT Method. Methods 24:402–408.

    Article  CAS  Google Scholar 

  • Mao, Y., and Tyler, B. M. 1996. Cloning and sequence analysis of elicitin genes of Phytophthora sojae. Fungal Genetics and Biology 20:169–172.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J. A., Dennis, A. L., Kumazawa, T., Haynes, A. M., and Nes, D. W. 2001. Soybean sterol composition and utilization by Phytophthora sojae. Phytochemistry 58:423–428.

    Article  PubMed  CAS  Google Scholar 

  • Mikes, V., Millat, M-.L., Ponchet, M., Ricci, P., and Blein, J-.P. 1997. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Letters. 416:190–192.

    Article  PubMed  CAS  Google Scholar 

  • Mikes, V., Millat, M-. L., Ponchet, M., Panabiéres, F., Ricci, P., and Blein, J-. P. 1998. Elicitins secreted by Phytophthora are a new class of sterol carrier proteins. Biochemical and Biophysical Research Communications 245:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. D., and Stafford, A. E. 1983. Evidence for metabolic and functional discriminaton of sterols by Phytophthora cactorum. Phytochemistry 22:75–78.

    Article  CAS  Google Scholar 

  • Osman, H., Mikes, V., Milat, M. L., Ponchet, M., Marion, D., Prang, T., Maume, B. F. V. S., and Blein, J. P. 2001a. Fatty acids bind to the fungal elicitor cryptogein and compete with sterols. FEBS Letters 489:555–589.

    Article  Google Scholar 

  • Osman, H., Vauthrin, S., Mikes, V., Milat, M. L., Panabieres, F., Marais, A., Brunie, S. M. B., Ponchet, M., and Blein, J. P. 2001b. Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Molecular Biology of the Cell 12:2825–2834.

    PubMed  CAS  Google Scholar 

  • Ponchet, M., Panabiéres, F., Milat, M-.L., Mikes, V., Montillet, J.-L., Suty, L., Triantaphylides, C., Tirilly, Y., and Blein, J-.P. 1999. Are elicitins cryptograms in plant-oomycete communications? Cellular and Molecular Life Sciences: CMLS 56:1020–1047.

    Article  PubMed  CAS  Google Scholar 

  • Puglisi, E., Nicelli, M., Capri, E., Trevisan, M., and Del Re, A. A. M. 2003. Cholesterol, β-sitosterol, ergosterol, and coprostanol in agricultural soils. Journal of Environmental Quality 32:466–471.

    Article  PubMed  CAS  Google Scholar 

  • Qutob, D., Hutema, E., Gijzen, M., and Kamoun, S. 2003. Variation in structure and activity among elicitins from Phytophthora sojae. Molecular Plant Pathology 4:119–124.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, B. M. 2007. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Molecular Plant Pathology 8:1–8.

    Article  CAS  PubMed  Google Scholar 

  • van West, P. Appiah, A. A., and Gow, N. A. R. 2003. Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology 62:99–113.

    Article  Google Scholar 

  • Vauthrin, S., Mikes, V., Milat, M-. L., Ponchet, M., Maume, B., Osman, H., and Blein, J-. P. 1999. Elicitins traps and transfer sterols from micelles, liposomes, and plant plasma membranes. Biochimica et Biophysica Acta 1419:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S.G., and Gottlieb, D. 1978. Evidence from mycelial studies for differences in the sterol biosynthetic pathway of Rhizoctonia solani and Phytophthora cinnamomi. Biochemical Journal 170:343–354.

    PubMed  CAS  Google Scholar 

  • Wu, H., Zheng, X. -B., and Ko, W. -H. 2003. Effect of culture origin on chemical stimulation of sexual reproduction in Phytophthora and Pythium. Botanical Bulletin of Academia Sinica 44:323–328.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Alumni Grant for Graduate Research and Scholarship from the Ohio State University (first author) and the USDA National Needs Graduate Fellowship Program. We appreciate the generosity of Dr. Anne Dorrance for providing the Phytophthora sojae isolate. The first author appreciates advice received from Dr. Terry Graham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousef, L.F., Yousef, A.F., Mymryk, J.S. et al. Stigmasterol and Cholesterol Regulate the Expression of Elicitin Genes in Phytophthora sojae . J Chem Ecol 35, 824–832 (2009). https://doi.org/10.1007/s10886-009-9653-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9653-1

Keywords

Navigation