Skip to main content
Log in

Phytolacca americana from Contaminated and Noncontaminated Soils of South Korea: Effects of Elevated Temperature, CO2 and Simulated Acid Rain on Plant Growth Response

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30°C) and non-elevated (25°C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2–6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2–5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aber, J. D., Hendrey, G. R., Botkin, B., Francis, A. J., and Melillo, J. M. 1982. Potential effects of acid precipitation on soil nitrogen and productivity of forest ecosystems. Water, Air and Soil Pollute 18:405–412.

    Article  CAS  Google Scholar 

  • Agricultural Improving Institute. 1988. Methods of Soil Chemical Analysis. p.450.

  • Al-Karaki, G. N., Hammad, R., and Rusan, M. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47.

    Article  CAS  Google Scholar 

  • Andrea, M., Steffen, A., Barbara, K., Gerhard, H. B., Uwe, S., and Hans-Peter, M. 2006. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell and Environ. 29:126–137.

    Article  Google Scholar 

  • Baker, A. J., Reeves, R. D., and Hajar, A. S. M. 1994. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presi (Brassicaceae). New Phytol. 127:61–68.

    Article  CAS  Google Scholar 

  • Barnett, H. L., and Hunter, B. B. 1998. Illustrated genera of imperfect fungi, p. 240. American Phytopathology Society, St. Paul.

    Google Scholar 

  • Bergholm, J., Berggren, D., and Alai, G. 2003. Soil acidification induced by ammonium sulphate addition in a Norway spruce forest in southwest Sweden. Water, Air, and Soil Pollution 148:87–109.

    Article  CAS  Google Scholar 

  • Bohnert, H. J., Nelson, D. E., and Jensen, R. G. 1995. Adaptations to environmental stresses. The Plant Cell 7:1099–1111.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, R. M., Thelen, G. G., Rodriguez, A., and Holven, W. E. 2004. Release from inhibitory soil biota in Europe may promote invasive plant invasion in North America. Nature 427:731–733.

    Article  PubMed  CAS  Google Scholar 

  • Dighton, J., and Skeffington, R. A. 1987. Effects of artificial acid precipitation on the mycorrhizae of Scots seedlings. New Phytol. 107:191–202.

    Article  CAS  Google Scholar 

  • Fan, H. B., and Wang, Y. H. 2000. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. Forest Ecol. & Management 126:321–329.

    Article  Google Scholar 

  • Hall, M. C., Stiling, P., Hungate, B. A., Drake, B. G., and Hunter, M. D. 2005. Effects of elevated CO2 and herbivore damage on litter quality in a scrub oak ecosystem. J. Chem. Ecol. 31:2243–2356.

    Article  Google Scholar 

  • Illmer, P., Obertegger, U., and Schinner, F. 2003. Microbiological properties in acidic forest soils with special consideration of KCl extractable Al. Water, Air, and Soil Pollution 148:3–14.

    Article  Google Scholar 

  • Inderjit, M. A. U. 1996. Plant phenolics in allelopathy. Bot Rev. 62:186–202.

    Article  Google Scholar 

  • Kasurinen, A., Peltonen, P. A., Julkunen-Tiito, R., Vapaavuori, E., Nuutinen, V., Holopainen, T., and Holopainen, J. K. 2007. Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant and Soil 292:25–43.

    Article  CAS  Google Scholar 

  • Khan, S., and Khan, N. N. 1983. Influence of lead and cadmium on the growth and nutrient concentration of tomato (Lycopersicon esculentum) and egg-plant (Solanum melongena). Plant and Soil 74:387–394.

    Article  CAS  Google Scholar 

  • Kim, Y. O., Johnson, J. D., and Lee, E. J. 2005a. Allelochemical effects and chemical analysis of leaf extracts from three Phytolaccacese species. J. Chem. Ecol. 31:1175–1186.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. O., Johnson, J. D., and Lee, E. J. 2005b. Phytotoxicity of Phytolacca americana leaf extracts on the growth, and physiological response of Cassia mimosoides. J. Chem. Ecol. 31:2963–2973.

    Article  PubMed  CAS  Google Scholar 

  • Korner, C. 1996. The response of complex multispecies systems to elevated CO2, pp. 20–42, in B. H. Walker, and W. L. Steffen (eds.). Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lavid, N., Schwartz, A., Yarden, O., and Tel-Or, E. 2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the water lily (Nymphaeaceae). Planta 212:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Lodhi, M. A. K. 1976. Role of allelopathy as expressed by dominating trees in a lowland forest in controlling the productivity and pattern of herbaceous growth. Amer. J. Bot. 63:1–8.

    Article  CAS  Google Scholar 

  • Loponen, J., Lempa, K., Ossipov, V., Kozlov, M. V., Girs, A., Hangasmaa, K., Haukioja, E., and Pihlaja, K. 2001. Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere. 45:291–301.

    Article  PubMed  CAS  Google Scholar 

  • Lubben, S., and Sauerbeck, D. 1991. The uptake and distribution of heavy metals by spring wheat. Water Air and Soil Pollut. 57–58:239–247.

    Article  Google Scholar 

  • Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315–332.

    CAS  Google Scholar 

  • Malinowski, D., Alloush, G., and Belesky, D. 1998. Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant and Soil 205:1–12.

    Article  CAS  Google Scholar 

  • Monnet, F., Vaillant, N., Hitmi, A., Coudret, A., and Sallanon, H. 2001. Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol. Plantarum 113:557–563.

    Article  CAS  Google Scholar 

  • Nishizono, H., Ichikawa, J., Suziki, S., and Ishii, F. 1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil 101:15–20.

    Article  CAS  Google Scholar 

  • Page, A. L., Miller, R. H., and Keeney, D. R. 1982. Methods of Soil Analysis, part 2, Chemical and Microbiological Properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison.

    Google Scholar 

  • Pagel Brown, A. L., Day, F. P., Hungate, B. A., Drake, B. G., and Hinkle, C. R. 2007. Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant and Soil. 292:219–232.

    Article  Google Scholar 

  • Park, S. H. 1995. Unrecorded naturalized species in Korea. Korean J. of Species Taxo. 25:123–130.

    Google Scholar 

  • Park, Y. M., Park, B. J., and Choi, K. R. 1999. pH changes in the Rhizosphere soil of Phytolacca americana. Korean J. Ecol. 22:7–11.

    Google Scholar 

  • Peltonen, P. A., Vapaavuori, E., and Julkunen-Tiito, R. 2005. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biology 11:1305–1324.

    Article  Google Scholar 

  • Petrini, O. 1996. Ecological and physiological aspects of host-specificity in endophytic fungi, pp. 87–100, in S. C. Redlin, and L. M. Carris (eds.). Endophytic Fungi in Grasses and Woody Plants. APS, St. Paul.

    Google Scholar 

  • Piper, C. S. 1966. Soil and plant analysis, p. 1368. Hans, Bombay.

    Google Scholar 

  • Rauser, W. E., and Meuwly, P. 1995. Retention of cadmium in roots of maize seedling. Role of complexation by phytochelatins and related thiol peptides. Plant Physiol. 109:195–202.

    Article  PubMed  CAS  Google Scholar 

  • Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., and Henson, J. M. 2002a. Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science. 298:581.

    Article  Google Scholar 

  • Redman, R. S., Roossinck, M. J., Maher, S., Andrews, Q. C., Schneider, W. L., and Rodriguez, R. J. 2002b. Field performance of cucurbit and tomato plants colonized with a nonpathogenic mutant of Colletotrichum magna (teleomorph: Glomerella magna; Jenkins and Winstead). Symbiosis. 32:55–70.

    Google Scholar 

  • Ro, H. M., Kim, P. G., Lee, I. B., Yiem, M. S., and Woo, S. Y. 2001. Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. Cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees. 15:195–203. doi:10.1007/s004680100099.

    Article  CAS  Google Scholar 

  • Robe, W. E., and Griffiths, H. 2000. Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environ. 23:1041–1054.

    Article  Google Scholar 

  • Rodriguez, R., Henson, J., Van Volenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O., and Redman, R. S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME-Nature. 2:406–416. doi:10.1038/ismej.2007.106.

    Google Scholar 

  • Sakihama, Y., and Yamasaki, H. 2002. Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Bio. Plant. 45:249–254.

    Article  CAS  Google Scholar 

  • Santiago, L. J. M., Louro, R. P., and De Oliveira, D. E. 2000. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of (Phyllanthus tenellus Roxb.) and their induction by copper sulphate. Ann. Bot. 86:1023–1032.

    Article  CAS  Google Scholar 

  • Sant’anna-Santos, B., Campos, F., Da Silva, L., Azevdgo, A. A., Marcos De Arajo, J., Alves, E. F., Monteiro Da Silva, A., and Aguiar, R. 2006. Effects of simulated acid rain on the foliar micromophology and anatomy of tree tropical species. Environ. Exp. Botany. 58:158–168.

    Article  CAS  Google Scholar 

  • Sas Institute 2000. SAS/STAT Guide for Personal Computers, Version 6.03 ed. SAS, Cary.

    Google Scholar 

  • Schurr, U., Walter, A., and Rascher, U. 2006. Functional dynamics of plant growth and photosynthesis - from steady-state to dynamics - from homogeneity to heterogeneity. Plant Cell Environ. 29:340–352.

    Article  PubMed  CAS  Google Scholar 

  • Seneviratne, G., and Jayasinghearachchi, H. S. 2003. Phenolic acids: Possible agents of modifying N2-fixing symbiosis through rhizobial alteration. Plant and Soil. 252:385–395.

    Article  CAS  Google Scholar 

  • Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J., and Allen, M. R. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature. 433:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Swain, T., and Hillis, W. E. 1959. The phenolic constituents of Prunus domestica I. The quantitative analysis of the phenolic constitutents. J. Sci. Food Agric. 10:63–68.

    Article  CAS  Google Scholar 

  • US National Acid Precipitation Assessment Program. 1991. Acidic deposition: State of science and technology, Vol. I–IV, ed. P. M. Irving. Government Printing Office, Washington, DC 20402-9352, USA.

  • Varma, A., Verma, S., Sudha, S. N., Butehorn, B., and Franken, P. 2006. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 6:2741–2744.

    Google Scholar 

  • Vivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C., and Callaway, R. M. 2004. Biogeographical variation in community response to root allelochemistry: Novel weapons and exotic invasion. Ecol. Lett. 7:285–292.

    Article  Google Scholar 

  • Wang, F., Lin, X., and Yin, R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil. 269:225–232.

    Article  CAS  Google Scholar 

  • Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., and Reeves, R. D. 2006. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil. 281:325–337.

    Article  CAS  Google Scholar 

  • Wilhite, S. E., Lumsden, R. D., and Straney, D. C. 2001. Peptide synthetase gene in Trichoderman virens. Appl. Environ. Microbiol. 11:5055–5062.

    Article  Google Scholar 

  • Wu, L., and Bradshaw, A. D. 1972. Aerial pollution and the rapid evolution of copper tolerance. Nature. 238:167–169.

    Article  CAS  Google Scholar 

  • Xin, L. H., Han, S. J., Li, L., Zhou, Y. M., and Zheng, J. Q. 2007. Responses of soil enzymes to long-term CO2 enrichment in forest ecosystems of Changbai Mountains. Northeast Forestry University and Ecological Society of China. 18:119–122.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Ro Hee Myoung for providing CO2 and temperature chamber. Funding was provided in part by NSF (0414463), US/IS BARD (3260-01C) and US Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina S. Redman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.O., Rodriguez, R.J., Lee, E.J. et al. Phytolacca americana from Contaminated and Noncontaminated Soils of South Korea: Effects of Elevated Temperature, CO2 and Simulated Acid Rain on Plant Growth Response. J Chem Ecol 34, 1501–1509 (2008). https://doi.org/10.1007/s10886-008-9552-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9552-x

Keywords

Navigation