Skip to main content
Log in

Plant Chemical Defense Induced by a Seed-Eating Pollinator Mutualist

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant-seed parasite pollination mutualisms involve a specific pollinator whose larvae develop by consuming a fraction of the host plant seeds. These mutualisms are stable only if the plant can control seed destruction by the larvae. Here, we studied the chemical response of the European globeflower Trollius europaeus to infestation by an increasing number of Chiastocheta fly larvae. We used liquid chromatographic analysis to compare the content of phenolic compounds in unparasitized and parasitized fruits collected in two natural populations of the French Alps, and mass spectrometry and nuclear magnetic resonance to elucidate the structure of adonivernith, a C-glycosyl-flavone. This compound is present in many of the organs of T. europaeus, but not found in other Trollius species. Furthermore, it is overproduced in the carpel walls of parasitized fruits, and this induced response to infestation by fly larvae is density-dependent (increases with larval number), and site-dependent (more pronounced in the high-altitude site). Mechanical damage did not induce adonivernith production. This tissue-specific and density-dependent response of T. europaeus to infestation by Chiastocheta larvae might be an efficient regulation mechanism of seed-predator mutualist population growth if it decreases survival or growth of the larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addicott, J. F. 1998. Regulation of mutualism between yuccas and yucca moths: population level processes. Oikos 81:119–129.

    Article  Google Scholar 

  • Alborn, T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Article  CAS  Google Scholar 

  • Bennett, R. N., and Wallsgrove, R. M. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127:617–633.

    Article  CAS  Google Scholar 

  • Despres, L., and Cherif, M. 2004. The role of competition in adaptive radiation: a field study on sequentially ovipositing host-specific seed predators. J. Anim. Ecol. 73:109–116.

    Article  Google Scholar 

  • Després, L., and Jaeger, N. 1999. Evolution of oviposition strategies and speciation in the globeflower flies Chiastocheta spp. (Anthomyiidae). J. Evol. Biol. 12:822–831.

    Article  Google Scholar 

  • Després, L., Pettex, E., Plaisance, V., and Pompanon, F. 2002. Speciation in the globeflower fly Chiastocheta spp. (Diptera: Anthomyiidae) in relation to host plant species, biogeography, and morphology. Mol. Phylogenet. Evol. 22:258–268.

    Article  PubMed  CAS  Google Scholar 

  • Després, L., Ibanez, S., Hemborg, Å. M., and Godelle, B. 2007. Geographic and within-population variation in the globeflower–globeflower fly interaction: the costs and benefits of rearing pollinators’ larvae. Oecologia 151:240–250.

    Article  PubMed  Google Scholar 

  • Elliger, C. A., Chan, B. G., Waiss, A. C., Lundin, R. E., and Haddon, W. F. 1980. C-Glycosylflavones from Zea mays that inhibit insect development. Phytochemistry 19:293–297.

    Article  CAS  Google Scholar 

  • Gonnet, J. F. 1981. Les relations entre les prairies du Triseto-Polygonion et les megaphorbiaies de l’Adenostylion: l’analyse flavonique d’especes communes aux deux groupements. Biochem. Syst. Ecol. 9:299–305.

    Article  CAS  Google Scholar 

  • Gronquist, M., Bezzerides, A., Attygalle, A., Meinwald, J., Eisner, M., and Eisner, T. 2001. Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc. Natl. Acad. Sci. U S A 98:13745–13750.

    Article  PubMed  CAS  Google Scholar 

  • Harborne, J. B. 1999. Plant chemical ecology, pp 137–196, in K. Mori (ed.). Comprehensive Natural Products Chemistry. Pergamon Press Inc, Oxford.

    Google Scholar 

  • Harborne, J. B., and Baxter, H. 1999. The Handbook of Natural Flavonoids. John Wiley & Sons, New York.

    Google Scholar 

  • Hemborg, Å. M., and Després, L. 1999. Oviposition by mutualistic seed-parasitic pollinators and its effects on annual fitness of single- and multi-flowered host plants. Oecologia 120:427–436.

    Article  Google Scholar 

  • Herrera, C. M., Medrano, M., Rey, P. J., Sanchez-Lafuente, A. M., Garcia, M. B., Guitian, J., and Manzaneda, A. J. 2002. Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism- and antagonism-related traits. Proc. Natl. Acad. Sci. U S A 99:16823–16828.

    Article  PubMed  CAS  Google Scholar 

  • Holland, J. N., and Deangelis, D. L. 2006. Interspecific population regulation and the stability of mutualism: fruit abortion and density-dependent mortality of pollinating seed-eating insects. Oikos 113:563–571.

    Article  Google Scholar 

  • Hörhammer, L., Wagner, H., and Leeb, W. 1960. On a new type of glycosid of the flavone series. Part 4. Adonivernith, a luteolin-8-hexityl mono-xyloside from Adonis vernalis L. Archiv. Pharm. 293(65):264–271.

    Article  Google Scholar 

  • Jaeger, N., and Després, L. 1998. Obligate mutualism between Trollius europaeus and its seed-parasite pollinators Chiastocheta flies in the Alps. C. R. Acad. Sc. Series 3 Sc. Vie 321:789–796.

    Google Scholar 

  • Jaeger, N., Till Bottraud, I., and Després, L. 2000. Evolutionary conflict between Trollius europaeus and its seed-parasite pollinators Chiastocheta flies. Evol. Ecol. Res. 2:885–896.

    Google Scholar 

  • Jaeger, N., Pompanon, F., and Després, L. 2001. Variation in predation costs with Chiastocheta egg number on Trollius europaeus : how many seeds to pay for pollination? Ecol. Entom. 26:56–62.

    Article  Google Scholar 

  • Jensen, U. 1995. Secondary compounds of the Ranunculiflorae. Plant Syst. Evol.(Suppl.) 9:97–98.

    Google Scholar 

  • Johnson, A. W., Snook, M. E., and Wiseman, B. R. 2002. Green leaf chemistry of various turfgrasses: differentiation and resistance to fall armyworm. Crop Sci. 42:2004–2010.

    Article  CAS  Google Scholar 

  • Koricheva, J., Larsson, S., Haukioja, E., and Keinanen, M. 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226.

    Article  CAS  Google Scholar 

  • Kuhajek, J. M., Douglas, A. W., Clark, A. M., and Slattery, M. 2004. Site-specific variation in the root chemistry and antifungal activity of Caltha leptosepala and Trollius laxus (Ranunculaceae). Biochem. Syst. Ecol. 32:949–967.

    Article  CAS  Google Scholar 

  • Lebreton, P. 1986. Les flavonoïdes: marqueurs systématiques chez les Renonculacées. Plant. Med. Phytother. XX:275–286.

    Google Scholar 

  • Li, X., Xiong, Z., Ying, X., Cui, L., Zhu, W., and Li, F. 2006. A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric method for the qualitative and quantitative analysis of the constituents of the flower of Trollius ledebouri Reichb. Anal. Chim. Acta 580:170–180.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L. J., Wang, X. K., and Kuang, H. X. 1992. Study on the chemical composition of leaves and stalks of Trollius macropetalus. Acta Pharm. Sin. 27:837–840.

    CAS  Google Scholar 

  • Liu, Z., Wang, L., Li, W., Huang, Y., and Xu, Z. C. 2004. Determination of orientin and vitexin in Trollius chinesis preparation by HPLC. China J. Chin. Mat. Med. 29:1051.

    Google Scholar 

  • Marigo, G. 1973. Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les Végétaux. Analusis 2:106–110.

    CAS  Google Scholar 

  • Markham, K. R., Mues, R., Stoll, M., and Zinsmeiter, H. D. 1987. NMR spectra of flavone di-C-glycosides from Apometzegeria pubescens and the detection of rotational isomerism in 8-C-hexosylflavones. Z. Naturforsch. 42c:1039–1042.

    Google Scholar 

  • Ossipov, V., Haukioja, E., Ossipova, S., Hanhimaki, S., and Pihlaja, K. 2001. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. Syst. Ecol. 29:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Pellmyr, O. 1989. The cost of mutualism—Interactions between Trollius europaeus and its pollinating parasites. Oecologia 78:53–59.

    Article  Google Scholar 

  • Pellmyr, O., and Huth, C. J. 1994. Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260.

    Article  CAS  Google Scholar 

  • Pompanon, F., Pettex, E., and Després, L. 2006. Patterns of resource exploitation in four coexisting globeflower fly species (Chiastocheta sp.). Acta Oecol. 29:233–240.

    Article  Google Scholar 

  • Reifenrath, K., and Muller, C. 2007. Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry 68:875–885.

    Article  PubMed  CAS  Google Scholar 

  • Roda, A. L., and Baldwin, I. T. 2003. Molecular technology reveals how the induced direct defenses of plants work. Basic Appl. Ecol. 4:15–26.

    Article  CAS  Google Scholar 

  • Shapiro, J., and Addicott, J. F. 2004. Re-evaluating the role of selective abscission in moth/yucca mutualisms. Oikos 105:449–460.

    Article  Google Scholar 

  • Simmonds, M. S. J. 2003. Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Summers, C. B., and Felton, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Article  CAS  Google Scholar 

  • Takemura, M., Nishida, R., Mori, N., and Kuwahara, Y. 2002. Acylated flavonol glycosides as probing stimulants of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry 61:135–140.

    Article  PubMed  CAS  Google Scholar 

  • Urrea-Bulla, A., Suarez, M. M., and Moreno-Murillo, B. 2004. Biological activity of phenolic compounds from Alchornea glandulosa. Fitoterapia 75:392–394.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H., Rosprim, L., and Galle, K. 1975. Endgultige struktur von adonivernith aus Adonis vernalis. Phytochemistry 14:1089–1091.

    Article  CAS  Google Scholar 

  • Wiseman, B. R., Snook, M. E., and Isenhour, D. J. 1993. Maysin content and growth of corn-earworm larvae (Lepidoptera, Noctuidae) on silks from 1st and 2nd ears of corn. J. Econ. Entom. 86:939–944.

    Google Scholar 

  • Wittstock, U., and Gershenzon, J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Op. Plant Biol. 5:300–307.

    Article  CAS  Google Scholar 

  • Zou, J. H., Yang, J. S., Dong, Y. S., Zhou, L., and Lin, G. 2005. Flavone C-glycosides from flowers of Trollius ledebouri. Phytochemistry 66:1121–1125.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the CNRS (GDR 2877). We thank Charlotte Tollenaere for assistance in the field and the UMS 2925 Joseph Fourier Alpine Station for logistics support provided and for giving us access to the exotic Trollius species. We thank C. Bosso from CERMAV for LC/mass analysis and Kim Barrett for correcting our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Gallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallet, C., Ibanez, S., Zinger, L. et al. Plant Chemical Defense Induced by a Seed-Eating Pollinator Mutualist. J Chem Ecol 33, 2078–2089 (2007). https://doi.org/10.1007/s10886-007-9362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9362-6

Keywords

Navigation