Skip to main content
Log in

Spectrum of Cyanide Toxicity and Allocation in Heliconius erato and Passiflora Host Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 05 April 2008

Abstract

The larvae of three races of Heliconius erato were fed various species of Passiflora containing varying levels of cyanoglucosides. The mortality rate of larvae and pupae rose when larvae were fed species of Passiflora capable of releasing larger quantities of cyanide. When larvae were fed species of Passiflora with these properties, the resulting adult butterflies also released higher levels of cyanide. This may serve as a defense mechanism. The compounds responsible for the release of cyanide were not evenly distributed throughout the adult butterfly’s body. The thorax contained the highest concentration of cyanogenic substances, followed by the head, wings, and abdomen. The younger tissues of Passiflora plants had higher levels of cyanide-releasing compounds than stems and mature leaves. Cyanogenic glycoside distribution within the plants is consistent with optimal allocation theory. The levels of cyanide-releasing substances in plants varied depending on the season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brako, L. and Zarucchi, J. L. 1993. Catalogue of the flowering plants and gymnosperms of Peru. Syst. Bot. Missouri Bot. Gard. 45:I–XI, 1–1286.

  • Brattsten, L. B. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals, pp. 199–270, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores, Their Interactions with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Brinker, A. M. and Seigler, D. S. 1989. Methods for the detection and quantitative determination of cyanide in plant material. Phytochem. Bull. 21:24–31.

    Google Scholar 

  • Brinker, A. M. and Seigler, D. S. 1992. Determination of cyanide and cyanogenic glycosides from plants, pp. 360–381, in H. F. Linskens and J. F. Jackson (eds.). Plant Toxin Analysis. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Brower, L. P. and Glazier, S. C. 1975. Localization of heart poisons in the monarch butterfly. Science 188:19–25.

    Article  PubMed  CAS  Google Scholar 

  • Brower, L. P., Brower, J. V. Z., and Corvino, J. M. 1967. Plant poisons in a terrestrial food chain. Proc. Natl. Acad. Sci. U.S.A. 57:893–898.

    Article  PubMed  CAS  Google Scholar 

  • Chai, P. 1988. Wing coloration of free-flying Neotropical butterflies as a signal learned by specialized avian predator. Biotropica 20:20–30.

    Article  Google Scholar 

  • Chai, P. 1996. Butterfly visual characteristics and ontogeny of responses to butterflies by a specialized tropical bird. Biol. J. Linn. Soc. 59:166–189.

    Article  Google Scholar 

  • Conn, E. E. 1981. Cyanogenic glycosides, pp. 479–499, in E. E. Conn (ed.). The Biochemistry of Plants. A Comprehensive Treatise, Vol 7, Secondary Plant Products. Academic Press, New York.

    Google Scholar 

  • Cooper-driver, G., Finch, S., Swain, T., and Bernays, E. 1977. Seasonal variation in secondary plants compounds in relation to the palatability of Pteridium aquilinum. Biochem. Syst. Ecol. 5:177–183.

    Article  CAS  Google Scholar 

  • Davis, R. H. and Nahrstedt, A. 1985. Cyanogenesis in insects, pp. 635–654, in G. A. Kerkut and L. I. Gilbert (ed.). Comprehensive Insect Physiology, Biochemistry and Pharmacology II. Pharmacology. Pergamon Press, Oxford.

    Google Scholar 

  • Ellis, W. M., Keymer, R. J., and Jones, D. A. 1977. The effect of temperature on the polymorphism of cyanogenesis in Lotus corniculatus L. Heredity 38:339–347.

    Google Scholar 

  • Haribal, M. and Renwick, J. A. A. 2001. Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J. Chem. Ecol. 27:1585–1594.

    Article  PubMed  CAS  Google Scholar 

  • Hay-roe, M. M. 2004. Comparative processing of cyanogenic glycosides and a novel cyanide inhibitory enzyme in Heliconius butterflies (Lepidoptera: Nymphalidae: Heliconiinae). Ph.D. dissertation, University of Florida, Gainesville.

  • Höesel, W. 1981. The enzymatic hydrolysis of cyanogenic glycosides, pp. 217–232, in B. Vennesland, E. E. Conn, C. Knowles, J. Westley, and F. Wissing (eds.). Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Huheey, J. E. 1976. Studies in warning coloration and mimicry. VII. Evolutionary consequences of Batesian–Müllerian spectrum: a model for Müllerian mimicry. Evolution 30:86–93.

    Article  Google Scholar 

  • Jones, D. A. and Rammani, A. D. 1985. Altruism and movement of plants. Evol. Theory 7:143–148.

    Google Scholar 

  • Kokko, H., Mappes, J., and Lindström, L. 2003. Alternative prey can change model-mimic dynamics between parasitism and mutualism. Ecol. Lett. 6:1068–1076.

    Article  Google Scholar 

  • Lambert, J. L., Ramasamy, J., and Paulstellis, J. V. 1975. Stable reagents for the colorimetric determination of cyanide by modified König reactions. Anal. Chem. 47:916–918.

    Article  CAS  Google Scholar 

  • Lindroth, R. L. and Weisbrod, A. V. 1991. Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochem. Syst. Ecol. 19:97–103.

    Article  CAS  Google Scholar 

  • Mallet, J. 1999. Causes and consequences of a lack of coevolution in Mullerian mimicry. Evol. Ecol. 13:777–806.

    Article  Google Scholar 

  • Mallet, J. and Joron, M. 1999. Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Annu. Rev. Ecol. Syst. 30:201–233.

    Article  Google Scholar 

  • McKey, D. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:305–320.

    Article  Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1983. Occurrence, variation, and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in the species of Heliconiini (Insects: Lepidoptera). Comp. Biochem. Physiol. 75B:65–73.

    CAS  Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glycosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 82B:745–749.

    CAS  Google Scholar 

  • Olafsdottir, E. S., Cornett, C., and Jaroszewski, J. W. 1989. Cyclopentenoid cyanohydrin glycosides with unusual sugar residues. Acta Chem. Scand. 43:51–55.

    Article  PubMed  CAS  Google Scholar 

  • Pough, H., Brower, L., Meck, R., and Kessell, S. R. 1973. Theoretical investigations of automimicry: multiple trial learning and the palatability spectrum. Proc. Natl. Acad. Sci. U.S.A. 70:2261–2265.

    Article  PubMed  Google Scholar 

  • Rammani, A. D. and Jones, D. A. 1985. Flexibility in cyanogenic phenotype of Lotus corniculatus L. in response to low fluctuating temperatures. Pak. J. Bot. 17:9–23.

    Google Scholar 

  • Rothschild, M. 1984. Aide mémoire mimicry. Ecol. Entomol. 9:311–319.

    Google Scholar 

  • Speed, M. P. and Turner, J. R. G. 1999. Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biol. J. Linn. Soc. 67:281–312.

    Article  Google Scholar 

  • Spencer, K. C. 1988. Chemical mediation of coevolution in the Passiflora–Heliconius interaction, pp. 167–240, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Srygley, R. B. and Chai, P. 1990. Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia 84:491–499.

    Google Scholar 

  • Zar, J. H. 1996. Biostatistical Analysis, 3rd edn. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

Download references

Acknowledgements

This study constitutes part of a University of Florida doctoral dissertation. MMHR thanks the following for help and encouragement: T. C. Emmel, F. Slansky, H. McAuslane, and D. Jones as members of my committee; C. Jiggins and M. Beltran for hospitality while in Panama; the Delores A. Auzenne Graduate Scholars Fellowship, the James & Margaret Gahan Scholarship, and the John A. Mülrennan Senior Scholarship at the University of Florida for financial support; Butterfly World; and the Association of Tropical Lepidoptera for travel grants to Tingo Maria, Huanuco, Peru, and Panama. We thank the Instituto de Recursos Naturales, Ministerio de Agricultura, Peru; the Smithsonian Tropical Research Institute, Panama; and the United States Department of Agriculture for collecting, exporting, and importing permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirian Medina Hay-Roe.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10886-008-9465-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay-Roe, M.M., Nation, J. Spectrum of Cyanide Toxicity and Allocation in Heliconius erato and Passiflora Host Plants. J Chem Ecol 33, 319–329 (2007). https://doi.org/10.1007/s10886-006-9234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9234-5

Keywords

Navigation