Skip to main content
Log in

Field Evidence of an Airborne Enemy-Avoidance Kairomone in Wolf Spiders

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Hogna helluo, Pardosa milvina, and Trochosa ruricola are co-occurring species of wolf spiders within agricultural fields in the eastern USA. The largest species, H. helluo, is a common predator of the two smaller species, P. milvina and T. ruricola. H. helluo frequently resides within soil fissures where P. milvina and T. ruricola may be attacked when they enter or walk near these fissures. We tested the ability of P. milvina and T. ruricola to avoid H. helluo-containing burrows by detecting airborne enemy-avoidance kairomones associated with H. helluo. To simulate soil fissures and control for visual and vibratory means of predator detection, we baited funneled pitfall traps with one of the following (N = 20 traps/treatment): (1) blank (empty trap); (2) one house cricket (Acheta domesticus); (3) one adult female H. helluo; and (4) one adult male H. helluo. Over two separate 3-d periods, we measured pitfall capture rates of P. milvina and T. ruricola as well as other incidentally captured ground-dwelling arthropods. During the day, male P. milvina showed significant avoidance of pitfall traps baited with H. helluo of either sex but showed no avoidance of empty traps or those containing crickets. At night, male T. ruricola showed a qualitatively similar pattern of avoiding H. helluo-baited traps, but the differences were not statistically significant. We found no evidence that other ground-dwelling arthropods either avoided or were attracted to H. helluo-baited traps. This study suggests that an airborne enemy-avoidance kairomone may mediate behavior among male P. milvina in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich, J. R. and Barros, T. M. 1995. Chemical attraction of male crab spiders (Araneae, Thomisidae) and kleptoparasitic flies (Diptera, Milichiidae and Chloropidae). J. Arachnol. 23:212–214.

    Google Scholar 

  • Allan, R. A., Elgar, M. A., and Capon, R. J. 1996. Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc. R. Soc. Lond. Ser. B 263:69–73.

    Article  CAS  Google Scholar 

  • Barnes, M. C., Persons, M. H., and Rypstra, A. L. 2002. The effect of predator chemical cue age on antipredator behavior in the wolf spider Pardosa milvina (Araneae: Lycosidae). J. Insect Behav. 15:269–281.

    Article  Google Scholar 

  • Becker, E. Riechert, S., and Singer, F. 2005. Male induction of female quiescence/catalepsis during courtship in the spider, Agelenopsis aperta. Behaviour 142:57–70.

    Article  Google Scholar 

  • Cady, A. B. 1984. Microhabitat selection and locomotor activity of Schizocosa ocreata (Walckenaer) (Araneae: Lycosidae). J. Arachnol. 11:297–307.

    Google Scholar 

  • Clark, R. J., Jackson, R. R., and Cutler, B. 2000. Chemical cues from ants influence predatory behavior in Habrocestum pulex, and ant-eating jumping spider (Araneae, Salticade). J. Arachnol. 28:309–318.

    Article  Google Scholar 

  • Dicke, M. and Grostal, P. 2001. Chemical detection of natural enemies by arthropods: An ecological perspective. Ann. Rev. Ecolog. Syst. 32:1–23.

    Article  Google Scholar 

  • Francke, W. and Schulz, S. 1999. Pheromones, pp. 197–261, in D. Barton, K. Nakanishi, O. Meth-Cohn and K. Mori (eds.). Comprehensive Natural Products Chemistry, Vol. 8. Elsevier, Amsterdam.

    Google Scholar 

  • Hallander, H. 1967. Range and movements of the wolf spiders Pardosa chelata (O. F. Miller) and P. pullata (Clerck). Oikos 18:360–364.

    Article  Google Scholar 

  • Hoefler, C. D., Taylor, M., and Jakob, E. M. 2002. Chemosensory response to prey in Phidippus audax (Araneae, Salticidae) and Pardosa milvina (Araneae, Lycosidae). J. Arachnol. 30:155–158.

    Article  Google Scholar 

  • Jackson, R. R., Clark, R. J., and Harland, D. P. 2002. Behavioural and cognitive influences of kairomones on an araneophagic jumping spider. Behaviour 139:749–775.

    Article  Google Scholar 

  • Kasumovic, M. M. and Andrade, C. B. 2004. Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): species- and population-specific responses. Can. J. Zool. 82:1027–1034.

    Article  Google Scholar 

  • Lehmann, L., Walker, S. E., and Persons, M. H. 2004. The influence of predator sex on chemically-mediated antipredator response in the wolf spider Pardosa milvina (Araneae: Lycosidae). Ethology 110:1–17.

    Article  Google Scholar 

  • Li, D. and Lee, W. S. 2004. Predator-induced plasticity in web-building behaviour. Anim. Behav. 67:309–318.

    Article  Google Scholar 

  • Marshall, S. D., Pavuk, D. M., and Rypstra, A. L. 2002. A comparative study of phenology and daily activity patterns in the wolf spiders Pardosa milvina and Hogna helluo in soybean agroecosystems in southwestern Ohio (Araneae: Lycosidae). J. Arachnol. 30:503–510.

    Article  Google Scholar 

  • Papke, M. D. Riechert, S. E., and Schulz, S. 2001. An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim. Behav. 61:877–886.

    Article  Google Scholar 

  • Persons, M. H. 1999. Hunger effects on the foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae). Anim. Behav. 57:81–88.

    Article  PubMed  Google Scholar 

  • Persons, M. H. and Rypstra, A. L. 2000. Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35.

    Article  Google Scholar 

  • Persons, M. H. and Rypstra, A. L. 2001. Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. J. Chem. Ecol. 27:2493–2504.

    Article  PubMed  CAS  Google Scholar 

  • Persons, M. H. and Uetz, G. W. 1996. Wolf spiders vary patch residence time in the presence of chemical cues from prey (Araneae, Lycosidae). J. Arachnol. 24:76–79.

    Google Scholar 

  • Persons, M. H. and Uetz, G. W. 1999. Age and sex-based differences in the foraging decisions of wolf spiders. J. Insect Behav. 12:723–736.

    Article  Google Scholar 

  • Persons, M. H., Walker, S. E., Rypstra, A. L., and Marshall, S. D. 2001. Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim. Behav. 61:43–51.

    Article  PubMed  Google Scholar 

  • Persons, M. H., Walker, S. E., and Rypstra, A. L. 2002. Fitness costs and benefits of antipredator behavior mediated by chemotactile cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). Behav. Ecol. 13:386–392.

    Article  Google Scholar 

  • Punzo, F. 1997. Leg autotomy and avoidance behavior in response to a predator in the wolf spider, Schizocosa avida (Araneae, Lycosidae). J. Arachnol. 25:202–205.

    Google Scholar 

  • Punzo, F. and Kukoyi, O. 1997. The effects of prey chemical cues on patch residence time in the presence of chemical cues from prey (Araneae, Lycosidae). Bull. Br. Arachnol. Soc. 10:323–326.

    Google Scholar 

  • Ruther, J. Meiners, T., and Steidle, J. L. M. 2002. Rich in phenomenon–lacking in terms. A classification of kairomones. Chemoecology 12:161–167.

    Article  Google Scholar 

  • Rypstra, A. L., Wieg, C., Walker, S. E., and Persons, M. H. 2003. Mutual mate assessment in wolf spiders: differences in the cues used by males and females. Ethology 109:315–325.

    Article  Google Scholar 

  • Samu, F., Sziranyi, A., and Kiss, B. 2003. Foraging in agricultural fields: local ‘sit-and-move’ strategy scales up to risk-averse habitat use in a wolf spider. Anim. Behav. 66:939–947.

    Article  Google Scholar 

  • Schulz, S. 2004. Semiochemistry of spiders, pp. 110–150, in R. T. Cardé, and J. G. Millar (eds.). Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Searcy, L. E., Rypstra, A. L., and Persons, M. H. 1999. Airborne chemical communication in the wolf spider Pardosa milvina. J. Chem. Ecol. 25:2527–2533.

    Article  CAS  Google Scholar 

  • Suter, R. B., Shane, C. M., and Hirscheimer, A. J. 1989. Frontinella pyramitela detects Argyrodes trigonum via cuticular chemicals. J. Arachnol. 17:237–240.

    Google Scholar 

  • Tietjen, W. J. 1979. Tests for olfactory communication in four species of wolf spiders (Araneae, Lycosidae). J. Arachnol. 6:197–206.

    Google Scholar 

  • Walker, S. E. and Rypstra, A. L. 2002. Sexual dimorphism in trophic morphology and feeding behavior of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive roles. Can. J. Zool. 80:679–688.

    Article  Google Scholar 

  • Walker, S. E. and Rypstra, A. L. 2003. Sexual dimorphism and the differential mortality model: is behaviour related to survival? Biol. J. Linn. Soc. 78:97–103.

    Article  Google Scholar 

  • Walker, S. E., Marshall, S. D., and Rypstra, A. L. 1999. The effects of feeding history on retreat construction in the wolf spider Hogna helluo. J. Arachnol. 27:689–691.

    Google Scholar 

  • Watson, P. J. 1986. Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigiosa (Araneae, Linyphiidae). Science 223:219–221.

    Article  Google Scholar 

  • Wilder, S. M., Devito, J., Persons, M. H., and Rypstra, A. L. 2005. The effects of moisture and heat on the efficacy of chemical cues used in predator detection by Pardosa milvina (Araneae, Lycosidae). J. Arachnol. 33:857–861.

    Article  Google Scholar 

  • Willey, M. B. and Jackson, R. R. 1993. Olfactory cues from conspecifics inhibit the web-invasion behavior of Portia, a web-invading, araneophagic jumping spider (Araneae: Salticidae). Can. J. Zool. 71:1415–1420.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ashley Boyer and Daisy Conduah for their help in setting up pitfall traps and collecting spiders used in this study. This research was funded by NSF grants DBI 0216776 to M. Persons and DBI 0216947 to A. Rypstra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew H. Persons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonewolf, K.W., Bell, R., Rypstra, A.L. et al. Field Evidence of an Airborne Enemy-Avoidance Kairomone in Wolf Spiders. J Chem Ecol 32, 1565–1576 (2006). https://doi.org/10.1007/s10886-006-9070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9070-7

Keywords

Navigation