Skip to main content
Log in

Within-Plant Variation In Glucosinolate Concentrations of Raphanus sativus Across Multiple Scales

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Variation in chemical defenses remains underexplored. In particular, little is known about patterns of variation at small scales within leaves and spatial variation of induction. I examined variation in glucosinolate concentrations in the leaves of Raphanus sativus at several different spatial scales in two related experiments. I used samples equivalent in area to the amount an intermediate-sized caterpillar might eat in 1 d, a smaller scale than used in most previous studies. I examined variation due to induction and leaf age and small-scale spatial variation within leaves. The mean and variance of glucosinolate concentrations were higher in induced plants, young leaves, and the proximal half of leaves. Higher glucosinolate concentrations in the proximal half of leaves are previously unreported. Small-scale variation was extreme, accounting for 57% of the total random variation, and spatially random. There was no spatial autocorrelation found at scales as small as 1–2 cm. The high degree of small-scale, spatially random variation in glucosinolate concentrations in leaves is previously unreported. This small-scale variation and the variation caused by induction may have significant effects on herbivores and could be an important component of plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • F. R. Adler R. Karban (1994) ArticleTitleDefended fortresses or moving targets?: Another model of inducible defenses inspired by military metaphors Amer. Nat. 144 813–832

    Google Scholar 

  • A. A. Agrawal N. S. Kurashige (2003) ArticleTitleA role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae J. Chem. Ecol. 29 1403–1415

    Google Scholar 

  • A. A. Agrawal S. Y. Strauss M. J. Stout (1999) ArticleTitleCosts of induced responses and tolerance to herbivory in male and female fitness components of wild radish Evolution 53 1093–1104

    Google Scholar 

  • M. R. Berenbaum (1995) ArticleTitleThe chemistry of defense: theory and practice Proc. Natl. Acad. Sci. 92 2–8

    Google Scholar 

  • R. P. Bodnaryk (1992) ArticleTitleEffects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard Phytochemistry 31 2671–2677

    Google Scholar 

  • P. D. Brown J. G. Tokuhisa M. Reichelt J. Gershenzon (2003) ArticleTitleVariation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana Phytochemistry 62 471–481

    Google Scholar 

  • F. S. Chew (1975) ArticleTitleCoevolution of Pierid butterflies and their Cruciferous foodplants I. The relative quality of available resources Oecologia 20 117–127

    Google Scholar 

  • F. S. Chew (1988) Biological effects of glucosinolates H. G. Cutler (Eds) Biologically Active Natural Products: Potential Use in Agriculture American Chemical Society Washington, DC 155–181

    Google Scholar 

  • N. A. C. Cressie (1991) Statistics for Spatial Data John Wiley & Sons New York

    Google Scholar 

  • P. H. Crowley (1992) ArticleTitleResampling methods for computation-intensive data analysis in ecology and evolution Ann. Rev. Ecolog. Syst. 23 405–447

    Google Scholar 

  • Denno, R. F. and McClure, M. S. (eds.). 1983. Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

  • P. M. Dolinger P. R. Ehrlich W. L. Fitch D. E. Breedlove (1973) ArticleTitleAlkaloid and predation patterns in Colorado lupine populations Oecologia 13 191–204

    Google Scholar 

  • K. J. Doughty G. A. Kiddle B. J. Pye R. M. Wallsgrove J. A. Pickett (1995) ArticleTitleSelective induction of glucosinolates in oilseed rape leaves by methyl jasmonate Phytochemistry 38 347–350

    Google Scholar 

  • M. G. Ettlinger A. Kjaer (1968) ArticleTitleSulfur compounds in plants Recent Adv. Phytochem. 1 59–144

    Google Scholar 

  • J. W. Fahey A. T. Zalcmann P. Talalay (2001) ArticleTitleThe chemical diversity and distribution of glucosinolates and isothiocyanates among plants Phytochemistry 56 5–51

    Google Scholar 

  • P. Feeny L. Rosenberry (1982) ArticleTitleSeasonal variation in the glucosinolate content of North American Brassica nigra and Dentaria species Biochem. Syst. Ecol. 10 23–32

    Google Scholar 

  • R. Feyereisen (1999) ArticleTitleInsect P-450 enzymes Annu. Rev. Entomol. 44 507–533

    Google Scholar 

  • S. N. Gardner A. A. Agrawal J. Gressel M. Mangel (1999) ArticleTitleStrategies to delay the evolution of resistance in pests: dose rotations and induced plant defenses Asp. Appl. Biol. 53 1–8

    Google Scholar 

  • J. I. Glendinning F. Slansky SuffixJr. (1995) ArticleTitleConsumption of a toxic food by caterpillars increases with dietary exposure: Support for a role of induced detoxification enzymes J. Comp. Physiol., A Sens. Neural Behav. Physiol. 176 337–345

    Google Scholar 

  • J. L. Harper (1989) ArticleTitleThe value of a leaf Oecologia 80 53–58

    Google Scholar 

  • T. Hartmann (1996) ArticleTitleDiversity and variability of plant secondary metabolism: a mechanistic view Entomol. Exp. Appl. 80 177–188

    Google Scholar 

  • R. K. Heaney G. R. Fenwick (1981) ArticleTitleA micro-column method for the rapid determination of total glucosinolate content of cruciferous material Z. Pflanzenzücht. 87 89–95

    Google Scholar 

  • R. Hilborn M. Mangel (1997) The Ecological Detective: Confronting Models with Data Princeton University Press Princeton, New Jersey

    Google Scholar 

  • H. Husebye S. Chadchawan P. Winge O. P. Thangstad A. M. Bones (2002) ArticleTitleGuard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis Plant Physiol. 128 1180–1188

    Google Scholar 

  • R. Karban A. A. Agrawal M. Mangel (1997) ArticleTitleThe benefits of induced defenses against herbivores Ecology 78 1351–1355

    Google Scholar 

  • V. M. Koritsas J. A. Lewis G. R. Fenwick (1991) ArticleTitleGlucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala) Ann. Appl. Biol. 118 209–222

    Google Scholar 

  • O. A. Koroleva A. Davies R. Deeken M. R. Thorpe A. D. Tomos R. Hedrich (2000) ArticleTitleIdentification of a new glucosinolate-rich cell type in Arabidopsis flower stalk Plant Physiol. 124 599–608

    Google Scholar 

  • V. Lambrix M. Reichelt T. Mitchell-Olds D. J. Kliebenstein J. Gershenzon (2001) ArticleTitleThe Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory The Plant Cell 13 2793–2807

    Google Scholar 

  • P. O. Larsen (1981) Glucosinolates P. K. Stumpf E. E. Conn (Eds) The Biochemistry of Plants: A Comprehensive Treatise Academic Press New York 501–525

    Google Scholar 

  • S. Louda S. Mole (1991) Glucosinolates: chemistry and ecology G. A. Rosenthal M. R. Berenbaum (Eds) Herbivores: Their Interactions with Secondary Plant Metabolites. Vol. 1: The Chemical Participants Academic Press San Diego 275–310

    Google Scholar 

  • S. M. Louda J. E. Rodman (1983a) ArticleTitleConcentration of glucosinolates in relation to habitat and insect herbivory for the native crucifer Cardamine cordifolia Biochem. Syst. Ecol. 11 199–207

    Google Scholar 

  • S. M. Louda J. E. Rodman (1983b) ArticleTitleEcological patterns in the glucosinolate content of a native mustard, Cardamine cordifolia, in the Rocky Mountains J. Chem. Ecol. 9 397–422

    Google Scholar 

  • W. J. Mattson R. A. Haack (1987) ArticleTitleThe role of drought in outbreaks of plant-eating insects Bioscience 37 110–118

    Google Scholar 

  • D. McKey (1974) ArticleTitleAdaptive patterns in alkaloid physiology Amer. Nat. 108 305–320

    Google Scholar 

  • M. D. Mikkelsen C. H. Hansen U. Wittstock B. A. Halkier (2000) ArticleTitleCytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, aprecursor of indole glucosinolates and indole-3-acetic acid J. Biol. Chem. 275 33712–33717

    Google Scholar 

  • P. Niemalä J. Tuomi S. SirÉn (1984) ArticleTitleSelective herbivory on mosaic leaves of variegated Acer pseudoplatanus Experientia 40 1433–1434

    Google Scholar 

  • C. M. Orians (2002) ArticleTitleVascular architecture and patchy nutrient availability generate within-plant heterogeneity in plant traits important to herbivores Am. J. Bot. 89 270–278

    Google Scholar 

  • C. M. Orians J. Pomerleau R. Ricco (2000) ArticleTitleVascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato J. Chem. Ecol. 26 471–485

    Google Scholar 

  • A. J. R. Porter A. M. Morton G. Kiddle K. J. Doughty R. M. Wallsgrove (1991) ArticleTitleVariation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. I. Effect of leaf age and position Ann. Appl. Biol. 118 461–467

    Google Scholar 

  • B. Reintanz M. Lehnen M. Reichelt J. Gershenzon M. Kowalczyk G. Sandberg M. Godde R. Uhl K. Palme (2001) ArticleTitleBus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates Plant Cell 13 351–367

    Google Scholar 

  • J. A. A. Renwick (1996) Diversity and dynamics of crucifer defenses against adults and larvae ofcabbage butterflies J. T. Romeo J. A. Saunders P. Barbosa (Eds) Phytochemical Diversity and Redundancy in Ecological Interactions. Recent Advances in Phytochemistry Plenum Press New York 57–79

    Google Scholar 

  • D. F. Rhoades R. G. Cates (1976) ArticleTitleToward a general theory of plant antiherbivore chemistry Recent Adv. Phytochem. 10 168–213

    Google Scholar 

  • E. A. S. Rosa P. M. F. Rodrigues (1998) ArticleTitleThe effect of light and temperature on glucosinolate concentration in the leaves and roots of cabbage seedlings J. Sci. Food Agric. 78 208–212

    Google Scholar 

  • J. C. Schultz (1983a) Habitat selection and foraging tactics of caterpillars in heterogenous trees R. F. Denno M. S. McClure (Eds) Variable Plants and Herbivores in Natural and Managed Systems Academic Press New York 61–90

    Google Scholar 

  • J. C. Schultz (1983b) Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies P. A. Hedin (Eds) Plant Resistance to Insects American Chemical Society Washington, DC 37–54

    Google Scholar 

  • A. L. Shelton (2000) ArticleTitleVariable chemical defenses in plants and their effects on herbivore behavior Evol. Ecol. Res. 2 231–249

    Google Scholar 

  • Shelton A. L. 2002. Variability of defensive chemicals in plants and their effects on herbivore behavior. PhD dissertation. University of California, Santa Cruz.

  • A. L. Shelton (2004) ArticleTitleVariation in chemical defenses of plants may improve the effectiveness of defence Evol. Ecol. Res. 6 709–726

    Google Scholar 

  • D. H. Siemens T. Mitchell-Olds (1996) ArticleTitleGlucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): Consequences of concentration and induced resistance Environ. Entomol. 25 1344–1353

    Google Scholar 

  • G. W. Snedecor W. G. Cochran (1989) Statistical Methods EditionNumber8th edn Iowa State University Press Ames, IA

    Google Scholar 

  • M. J. Snyder E.-L. Hsu R. Feyereisen (1993) ArticleTitleInduction of cytochrome P-450 activities by nicotine in the tobacco hornworm, Manduca sexta J. Chem. Ecol. 19 2903–2916

    Google Scholar 

  • M. J. Stout K. V. Workman S. S. Duffey (1996) ArticleTitleIdentity, spatial distribution, and variability of induced chemical responses in tomato plants Entomol. Exp. Appl. 79 255–271

    Google Scholar 

  • J. Suomela M. P. Ayres (1994) ArticleTitleWithin-tree and among-tree variation in leaf characteristics of mountain birch and its implication for herbivory Oikos 70 212–222

    Google Scholar 

  • J. Suomela V. Ossipov E. Haukioja (1995) ArticleTitleVariation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth of Epirrita autumnata larvae J. Chem. Ecol. 21 1421–1446

    Google Scholar 

  • O. P. Thangstad B. Gilde S. Chadchawan M. Seem H. Husebye D. Bradley A. M. Bones (2004) ArticleTitleCell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum Plant Mol. Biol. 54 597–611

    Google Scholar 

  • A. J. Underwood (1997) Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance Cambridge University Press Cambridge

    Google Scholar 

  • R. Verkerk M. Dekker (2004) ArticleTitleGlucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. Var. Capitata f. rubra DC.) after various microwave treatments J. Agric. Food Chem. 52 7318–7323

    Google Scholar 

  • T. G. Whitham (1981) Individual trees as heterogenous environments: adaptation to herbivory or epigenetic noise R. F. Denno H. Dingle (Eds) Insect Life History Patterns: Habitat and Geographic Variation Springer-Verlag Berlin Heidelberg, New York 9–27

    Google Scholar 

  • T. G. Whitham (1983) Host manipulation of parasites: within-plant variation as a defense against rapidly evolving pests R. F. Denno M. S. McClure (Eds) Variable Plants and Herbivores in Natural and Managed Systems Academic Press New York 15–41

    Google Scholar 

  • W. V. Zucker (1982) ArticleTitleHow aphids choose leaves: the role of phenolics in host selection by a galling aphid Ecology 63 972–981

    Google Scholar 

Download references

Acknowledgments

This manuscript was greatly improved by comments from Anurag Agrawal, Suzanne Alonzo, Carol Boggs, Laurel Fox, Tom Miller, Paul Richards, Nick Wolf, and two anonymous reviewers. I thank Greg Gilbert, Jim Velzy, Linda Locatelli, Feinming Chen, Brian Fulfrost, and the UCSC GIS laboratory for resources and technical help. Emily Agin, Rachel Baker-de Kater, Tanya Baxter, Elaine Chow, Jennifer Douglas, John Fejes, Daphne Gehringer, Beth Howard, and Jessica Tuttle provided laboratory assistance. This work would not have been completed without the advice and encouragement of Marc Mangel. Funding was provided by a National Science Foundation Graduate Research Fellowship, USDA Grant 443080-22463, a UCSC Academic Senate Grant to M. Mangel, and the School of Computational Science and Information Technology at Florida State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela L. Shelton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelton, A.L. Within-Plant Variation In Glucosinolate Concentrations of Raphanus sativus Across Multiple Scales. J Chem Ecol 31, 1711–1732 (2005). https://doi.org/10.1007/s10886-005-5922-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-5922-9

Key Words

Navigation