Skip to main content
Log in

Stability Analysis of Stochastic 3D Lagrangian-Averaged Navier-Stokes Equations with Infinite Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The asymptotic behaviour of stochastic three-dimensional Lagrangian-averaged Navier-Stokes equations with infinite delay and nonlinear hereditary noise is analysed. First, using Galerkin’s approximations and the monotonicity method, we prove the existence and uniqueness of solutions when the non-delayed external force is locally integrable and the delay terms are globally Lipschitz continuous with an additional assumption. Next, we show the existence and uniqueness of stationary solutions to the corresponding deterministic equation via the Lax-Milgram and the Schauder theorems. Later, we focus on the stability properties of stationary solutions. To begin with, we discuss the local stability of stationary solutions for general delay terms by using a direct method and then apply the abstract results to two kinds of infinite delays. Besides, the exponential stability of stationary solutions is also established in the case of unbounded distributed delay. Moreover, we investigate the asymptotic stability of stationary solutions in the case of unbounded variable delay by constructing appropriate Lyapunov functionals. Eventually, we establish criteria on the polynomial asymptotic stability of stationary solutions for the special case of proportional delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

We confirm that all the data necessary for the research carried out in this paper are included here.

References

  1. Anguiano, M., Caraballo, T., Real, J., Valero, J.: Pullback attractors for a nonautonomous integro-differential equation with memory in some unbounded domains. Int. J. Bifurc. Chaos Appl. Sci. Eng. 3, 1350042 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appleby, J. A. D., Buckwar, E.: Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Proceedings of the 10’th Colloquium on the Qualitative Theory of Differential Equations 32 pp., Electron. J. Qual. Theory Differ. Equ., Szeged, (2016)

  3. Arnold, L.: Random Dynamical Systems. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  4. Bensoussan, A., Temam, R.: Équations stochastiques du type Navier-Stokes. J. Funct. Anal. 13, 195–222 (1973)

    Article  MATH  Google Scholar 

  5. Breckner, L. H.: Approximation and optimal control of the stochastic Navier-Stokes equation, Dissertation, Martin-Luther University, Halle-Wittenberg, (1999)

  6. Brzeźniak, Z., Caraballo, T., Langa, J.A., Li, Y., Łukaszewiczd, G., Real, J.: Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains. J. Diff. Equ. 255, 3897–3919 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Amer. Math. Soc. 358, 5587–5629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caraballo, T., Garrido-Atienza, M.J., Schmalfuß, B., Valero, J.: Global attractor for a non-autonomous integro-differential equation in materials with memory. Nonlinear Anal. 73, 183–201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caraballo, T., Han, X.: A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions. Discrete Contin. Dyn. Syst. Ser. S 8, 1079–1101 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Caraballo, T., Langa, J.A., Taniguchi, T.: The exponential behaviour and stabilizability of stochastic 2D-Navier-Stokes equations. J. Differ. Equ. 179, 714–737 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caraballo, T., Łukaszewicz, G., Real, J.: Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains. C. R. Math. Acad. Sci. Paris 342, 263–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caraballo, T., Márquez-Durán, A.M., Real, J.: On the stochastic 3D-Lagrangian averaged Navier-Stokes \(\alpha \)-model with finite delay. Stoch. Dyn. 5, 189–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caraballo, T., Márquez-Durán, A.M., Real, J.: The asymptotic behaviour of a stochastic 3D LANS-alpha model. Appl. Math. Optim. 53, 141–161 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caraballo, T., Márquez-Durán, A.M., Real, J.: Asymptotic behaviour of the three-dimensional \(\alpha \)-Navier-Stokes model with delays. J. Math. Anal. Appl. 340, 410–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caraballo, T., Real, J.: Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 2441–2453 (2001)

  16. Caraballo, T., Real, J., Taniguchi, T.: On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462, 459–479 (2006)

  17. Cheskidov, A., Foias, C.: On global attractors of the 3D Navier-Stokes equations. J. Diff. Equ. 231, 714–754 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheskidov, A., Lu, S.S.: Uniform global attractors for the nonautonomous 3D Navier-Stokes equations. Adv. Math. 267, 277–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chow, P.L.: Introduction to Stochastic Partial Differential Equations. Wayne State University, Lecture Notes (2000)

    Google Scholar 

  20. Coutand, D., Peirce, J., Shkoller, S.: Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Comm. Pure Appl. Anal. 1, 35–50 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. DaPrato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  22. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity, in: SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, (1992)

  23. García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors for 2D Navier-Stokes equations with delays and their regularity. Adv. Nonlinear Stud. 13, 331–357 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. García-Luengo, J., Marín-Rubio, P., Real, J.: Regularity of pullback attractors and attraction in \(H^1\) in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete Contin. Dyn. Syst. 34, 181–201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garrido-Atienza, M.J., Marín-Rubio, P.: Navier-Stokes equations with delays on unbounded domains. Nonlinear Anal. 64, 1100–1118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hale, J. K.: Retarded equations with infinite delays. Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978), pp. 157–193, Lecture Notes in Math. 730, Springer, Berlin, (1979)

  27. Kloeden, P.E., Valero, J.: The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete Contin. Dyn. Syst. 28, 161–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kolmanovskii, V.B., Shaikhet, L.E.: New results in stability theory for stochastic functional differential equations (SFDEs) and their applications, In: Proceedings of Dynamical Systems and Applications, vol. 1, Dynamic Publishers, pp. 167–171 (1994)

  29. Leray, J.: Étude de diverses équations intgrales non linéaires et de quelques problmes que pose l’hydrodynamique. (French). 82 pp (1933)

  30. Liu, L., Caraballo, T., Marín-Rubio, P.: Stability results for 2D Navier-Stokes equations with unbounded delay. J. Diff. Equ. 265, 5685–5708 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, L., Caraballo, T.: Analysis of a stochastic 2D-Navier-Stokes model with infinite delay. J. Dynam. Diff. Equ. 31, 2249–2274 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marín-Rubio, P., Márquez-Durán, A.M., Real, J.: Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete Contin. Dyn. Syst. Ser. B 14, 655–673 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Marín-Rubio, P., Márquez-Durán, A.M., Real, J.: Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete Contin. Dyn. Syst. 31, 779–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marín-Rubio, P., Real, J., Valero, J.: Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case. Nonlinear Anal. 74, 2012–2030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marsden, J.E., Shkoller, S.: Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-\(\alpha \)) equations on bounded domains, Topological methods in the physical sciences (London, 2000). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359, no. 1784, 1449–1468 (2001)

  36. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity, Longman, Harlow. John Wiley, New York (1987)

    MATH  Google Scholar 

  37. Robinson, J.C., Sadowski, W.: Almost-everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier-Stokes equations. Nonlinearity 22, 2093–2099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, Cham (2013)

    Book  MATH  Google Scholar 

  39. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, Philadelphia, PA (1995)

    Book  MATH  Google Scholar 

  41. Ulam, S.M., von Neumann, J.: Random ergodic theorems. Bull. Amer. Math. Soc. 51, p660 (1945)

    Google Scholar 

  42. Evelyn Zhao, X.Y., Hu, B.: The impact of time delay in a tumor model, Nonlinear Anal. Real World Appl. 51 103015, 29 pp (2020)

Download references

Acknowledgements

The research of the first author has been partially supported by CSC (China Scholarship Council, No. 202006990054) for 1 year’s study abroad at the University of Sevilla. The research of the first three authors has been partially supported by the National Natural Science Foundation of China (No. 11571283). The research of the first and fourth authors has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under the project PGC2018-096540-B-I00, and by Junta de Andalucía (Consejería de Economía y Conocimiento) under project US-1254251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Caraballo.

Ethics declarations

Conflict of interest

We confirm that we do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, Y., Zhang, Q. et al. Stability Analysis of Stochastic 3D Lagrangian-Averaged Navier-Stokes Equations with Infinite Delay. J Dyn Diff Equat 35, 3011–3054 (2023). https://doi.org/10.1007/s10884-022-10244-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10244-0

Keywords

Mathematics Subject Classification

Navigation