Skip to main content
Log in

Bogdanov–Takens and Triple Zero Bifurcations for a Neutral Functional Differential Equations with Multiple Delays

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, a neutral functional differential equation with multiple delays is considered. In a first step, we assumed some sufficient hypotheses to guarantee the existence of the Bogdanov–Takens and the triple-zero bifurcations. In a second step, the normal form of the two bifurcations is obtained by using the reduction on the center manifold and the theory of the normal form. Finally, we applied our study to a class of three-neuron bidirectional associative memory networks, its dynamic behaviors are studied and proved by an example and its numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faria, T., Magalhaes, L.T.: Normal forms for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Freire, E., Gamero, E., Rodríguez-Luis, A.J., Algaba, A.: A note on the triple-zero linear degeneracy: normal forms, dynamical and bifurcation behaviors of an unfolding. Int. J. Bifurc. Chaos 12(12), 2799–2820 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Yu, P., Yuan, Y.: The simplest normal forms associated with a triple zero eigenvalue of indices one and two. Nonlinear Anal. Theory Methods Appl. 47(2), 1105–1116 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Dong, T., Liao, X.: Bogdanov–Takens bifurcation in a tri-neuron BAM neural network model with multiple delays. Nonlinear Dyn. 71(3), 583–595 (2013)

    MathSciNet  MATH  Google Scholar 

  5. He, X., Li, C., Shu, Y.: Triple-zero bifurcation in van der Pol’s oscillator with delayed feedback. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5229–5239 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Jiang, W., Yuan, Y.: Bogdanov–Takens singularity in van der Pol’s oscillator with delayed feedback. Physica D 227(2), 149–161 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Liu, Z., Yuan, R.: Bifurcations in predator-prey systems with nonmonotonic functional response. Nonlinear Anal. Real World Appl. 6(1), 187–205 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Xu, Y., Huang, M.: Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity. J. Differ. Equ. 244(3), 582–598 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Qiao, Z., Liu, X., Zhu, D.: Bifurcation in delay differential systems with triple-zero singularity. Chinese J. Contemp. Math. 31(1), 41–54 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Nowak, M.A., Tarnita, C.E., Antal, T.: Evolutionary dynamics in structured populations. Philos. Trans. R. Soc. B Biol. Sci. 365(1537), 19–30 (2010)

    Google Scholar 

  11. Field, M.J.: Heteroclinic networks in homogeneous and heterogeneous identical cell systems. J. Nonlinear Sci. 25(3), 779–813 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Erbe, L.H., Krawcewicz, W., Geba, K., Wu, J.: S1-degree and global Hopf bifurcation theory of functional differential equations. J. Differ. Equ. 98(2), 277–298 (1992)

    MATH  Google Scholar 

  13. Öktem, H., Pearson, R., Egiazarian, K.: An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations). Chaos Interdiscip. J. Nonlinear Sci. 13(4), 1167–1174 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  15. Bellman, R.E., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  16. Jian-she, Y.U.: Existence of positive solutions for neutral differential equations. Sci. China Ser. A Math. Phys. Astron. Technol. Sci. 35(11), 1306–1313 (1992)

    MathSciNet  Google Scholar 

  17. Han, Q.L.: On stability of linear neutral systems with mixed time delays: a discretized Lyapunov functional approach. Automatica 41(7), 1209–1218 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Wang, C., Wei, J.: Hopf bifurcation for neutral functional differential equations. Nonlinear Anal. Real World Appl. 11(3), 1269–1277 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Weedermann, M.: Hopf bifurcation calculations for scalar neutral delay differential equations. Nonlinearity 19(9), 2091–2102 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Aouiti, C.: Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks. Neural Comput Appl 29(9), 477–495 (2018)

    Google Scholar 

  21. Achouri, H., Aouiti, C., Hamed, B.B.: Bogdanov–Takens bifurcation in a neutral delayed Hopfield neural network with bidirectional connection. Int. J. Biomath. 13(06), 2050049 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Aouiti, C., Dridi, F.: New results on impulsive Cohen–Grossberg neural networks. Neural Process. Lett. 49(3), 1459–1483 (2019)

    MATH  Google Scholar 

  23. Aouiti, C., Assali, E.A.: Stability analysis for a class of impulsive bidirectional associative memory (BAM) neural networks with distributed delays and leakage time-varying delays. Neural Process. Lett. 50(1), 851–885 (2019)

    Google Scholar 

  24. Aouiti, C., Li, X., Miaadi, F.: A new LMI approach to finite and fixed time stabilization of high-order class of BAM neural networks with time-varying delays. Neural Process. Lett. 50(1), 815–838 (2019)

    Google Scholar 

  25. Aouiti, C., Gharbia, I.B., Cao, J., Alsaedi, A.: Dynamics of impulsive neutral-type BAM neural networks. J. Franklin Inst. 356(4), 2294–2324 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Aouiti, C.: Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cogn. Neurodyn. 10(6), 573–591 (2016)

    MathSciNet  Google Scholar 

  27. Aouiti, C., Hui, Q., Jallouli, H., Moulay, E.: Fixed-time stabilization of fuzzy neutral-type inertial neural networks with time-varying delay. Fuzzy Sets Syst. 411, 48–67 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Achouri, H., Aouiti, C.: Homoclinic and heteroclinic motions of delayed inertial neural networks. Neural Comput. Appl. 1–16 (2020)

  29. Wang, R., Liu, H., Feng, F., Yan, F.: Bogdanov–Takens bifurcation in a neutral BAM neural networks model with delays. IET Syst. Biol. 11(6), 163–173 (2017)

    Google Scholar 

  30. Niu, B., Wei, J.: Bifurcation analysis of a NFDE arising from multiple-delay feedback control. Int. J. Bifurc. Chaos. 21(03), 759–774 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, L., Wang, H., Hu, H.: Symbolic computation of normal form for Hopf bifurcation in a neutral delay differential equation and an application to a controlled crane. Nonlinear Dyn. 70(1), 463–473 (2012)

    MathSciNet  Google Scholar 

  32. Zeng, X., Xiong, Z., Wang, C.: Hopf bifurcation for neutral-type neural network model with two delays. Appl. Math. Comput. 282, 17–31 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Hale, J.K., Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  34. Cao, J., Yuan, R.: Bogdanov–Takens bifurcation for neutral functional differential equations. Electron. J. Differ. Equ. 252, 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122(2), 181–200 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Weedermann, M.: Normal forms for neutral functional differential equations. Top. Funct. Differ. Differ. Equ. 29, 361–368 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Guo, S., Wu, J.: Bifurcation Theory of Functional Differential Equations. Springer, New York (2013)

    MATH  Google Scholar 

  38. Campbell, S.A., Yuan, Y.: Zero singularities of codimension two and three in delay differential equations. Nonlinearity 21(11), 2671 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Jiang, J., Song, Y.: Bogdanov–Takens bifurcation in an oscillator with negative damping and delayed position feedback. Appl. Math. Model. 37(16–17), 8091–8105 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Arino, O., Hbid, M.L., Dads, E.A.: Delay differential equations and applications. In: Proceedings of the NATO Advanced Study Institute held in Marrakech, Morocco, 9–21 September 2002, vol. 205. Springer Science & Business Media (2007)

  41. Liua, X., Wangb, J.: Bogdanov–Takens and triple zero bifurcations in general differential systems with m delays. Rn 1000, 1 (2016)

    Google Scholar 

  42. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. J. Appl. Mech. 51(4), 947 (1984)

    Google Scholar 

  43. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Dong, T., Liao, X., Huang, T.: Dynamics of a congestion control model in a wireless access network. Nonlinear Anal. Real World Appl. 14(1), 671–683 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Yan, X.P.: Bifurcation analysis in a simplified tri-neuron BAM network model with multiple delays. Nonlinear Anal. Real World Appl. 9(3), 963–976 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Hale, J.K.: Functional differential equations. In: Hsieh, P.F., Stoddart, A.W.J. (eds.) Analytic Theory of Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  47. Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations, vol. 463. Springer, Berlin (2013)

    MATH  Google Scholar 

  48. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations, vol. 180. Elsevier, Amsterdam (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaouki Aouiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this part, we will define the notations:

$$\begin{aligned} H_{1}= & {} \left( A_{1}+\displaystyle \sum _{i=1}^{q}B_{i1}\right) \varphi _{1}^{0}, \\ H_{2}= & {} A_{1}\varphi _{2}^{0}+\displaystyle \sum _{i=1}^{q}B_{i1}(\varphi _{2}^{0}-\tau _{i}\varphi _{1}^{0}), \\ H_{3}= & {} A_{1}\varphi _{3}^{0}+ \displaystyle \sum _{i=1}^{q}B_{i1}\left( \varphi _{3}^{0}-\tau _{i}\varphi _{2}^{0} +\frac{1}{2}\tau _{i}^{2}\varphi _{1}^{0}\right) , \\ H_{4}= & {} \left( A_{2}+\displaystyle \sum _{i=1}^{q}B_{i2}\right) \varphi _{1}^{0}, \\ H_{5}= & {} A_{2}\varphi _{2}^{0}+\displaystyle \sum _{i=1}^{q}B_{i2}(\varphi _{2}^{0}-\tau _{i}\varphi _{1}^{0}), \\ H_{6}= & {} A_{2}\varphi _{3}^{0}+ \displaystyle \sum _{i=1}^{q}B_{i2}\left( \varphi _{3}^{0}-\tau _{i}\varphi _{2}^{0} +\frac{1}{2}\tau _{i}^{2}\varphi _{1}^{0}\right) , \\ H_{7}= & {} \left( A_{3}+\displaystyle \sum _{i=1}^{q}B_{i3}\right) \varphi _{1}^{0}, \\ H_{8}= & {} A_{3}\varphi _{2}^{0}+\displaystyle \sum _{i=1}^{q}B_{i3}\left( \varphi _{2}^{0}-\tau _{i}\varphi _{1}^{0}\right) , \\ H_{9}= & {} A_{3}\varphi _{3}^{0}+ \displaystyle \sum _{i=1}^{q}B_{i3}\left( \varphi _{3}^{0}-\tau _{i}\varphi _{2}^{0} +\frac{1}{2}\tau _{i}^{2}\varphi _{1}^{0}\right) , \\ H_{10}= & {} \displaystyle \sum _{j=1}^{n}\displaystyle \sum _{0\le k\le l\le q}D_{jkl}\varphi _{1}^{0}\varphi _{1j}^{0}, \\ H_{11}= & {} \displaystyle \sum _{j=1}^{n}\displaystyle \sum _{0\le k\le l\le q}D_{jkl}(\varphi _{2}^{0}-\tau _{l}\varphi _{1}^{0})(\varphi _{2j}^{0}-\tau _{k}\varphi _{1j}^{0}), \\ H_{12}= & {} \displaystyle \sum _{j=1}^{n}\displaystyle \sum _{0\le k\le l\le q}D_{jkl}\left( \varphi _{3}^{0}-\tau _{l}\varphi _{2}^{0}+\frac{1}{2}\tau _{l}^{2}\varphi _{1}^{0}\right) \left( \varphi _{3j}^{0}-\tau _{l}\varphi _{2j}^{0}+\frac{1}{2}\tau _{l}^{2}\varphi _{1j}^{0}\right) , \\ H_{13}= & {} \displaystyle \sum _{j=1}^{n}\displaystyle \sum _{0\le k\le l\le q}D_{jkl}((\varphi _{2}^{0}-\tau _{l}\varphi _{1}^{0})\varphi _{1j}^{0} + (\varphi _{2j}^{0}-\tau _{k}\varphi _{1j}^{0})\varphi _{1}^{0}), \\ H_{14}= & {} \displaystyle \sum _{j=1}^{n}\displaystyle \sum _{0\le k\le l\le q}D_{jkl}\left( \varphi _{1j}^{0}\left( \varphi _{3}^{0} - \tau _{l}\varphi _{2}^{0} + \frac{1}{2}\tau _{l}^{2}\varphi _{1}^{0}\right) + \varphi _{1}^{0}\left( \varphi _{3j}^{0} - \tau _{k}\varphi _{2j}^{0} + \frac{1}{2}\tau _{k}^{2}\varphi _{1j}^{0}\right) \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achouri, H., Aouiti, C. Bogdanov–Takens and Triple Zero Bifurcations for a Neutral Functional Differential Equations with Multiple Delays. J Dyn Diff Equat 35, 355–380 (2023). https://doi.org/10.1007/s10884-021-09992-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09992-2

Keywords

Navigation