Skip to main content
Log in

A Free Boundary Problem for the Predator–Prey Model with Double Free Boundaries

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we investigate a free boundary problem for the classical Lotka–Volterra type predator–prey model with double free boundaries in one space dimension. This system models the expanding of an invasive or new predator species in which the free boundaries represent expanding fronts of the predator species and are described by Stefan-like condition. We prove a spreading–vanishing dichotomy for this model, namely the predator species either successfully spreads to infinity as \(t\rightarrow \infty \) at both fronts and survives in the new environment, or it spreads within a bounded area and dies out in the long run while the prey species stabilizes at a positive equilibrium state. The long time behavior of solution and criteria for spreading and vanishing are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, K.J., Dunne, D.C., Candner, R.A.: A semilinear parabolic system arising in the theory of super conductivity. J. Differ. Equ. 40, 232–252 (1981)

    Article  Google Scholar 

  2. Bunting, G., Du, Y.H., Krakowski, K.: Spreading speed revisited: analysis of a free boundary model. Netw. Heterog. Media 7, 583–603 (2012). (special issue dedicated to H. Matano)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems. Graduate studies in mathematics, vol. 68. American Mathematical Society, Providence, RI (2005)

    MATH  Google Scholar 

  4. Chen, X.F., Friedman, A.: A free boundary problem arising in a model of wound healing. SIAM J. Math. Anal. 32(4), 778–800 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crank, J.: Free and Moving Boundary Problem. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  6. Du, Y.H., Guo, Z.M.: Spreading–vanishing dichotomy in a diffusive logistic model with a free boundary, II. J. Differ. Equ. 250, 4336–4366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Y.H., Guo, Z.M.: The Stefan problem for the Fisher-KPP equation. J. Differ. Equ. 253(3), 996–1035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Y.H., Guo, Z.M., Peng, R.: A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 265, 2089–2142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Y.H., Liang, X.: Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model. Ann. Inst. Henri Poincare Anal. Non Lineaire 32(2), 279–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Y.H., Lin, Z.G.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal., 42, 377–405 (2010). Erratum. SIAM J. Math. Anal. 45, 1995–1996 (2013)

  11. Du, Y.H., Lou, B.D.: Spreading and vanishing in nonlinear diffusion problems with free boundaries. J. Eur. Math. Soc. (in press) (arXiv:1301.5373)

  12. Du, Y.H., Ma, L.: Logistic type equations on \({\mathbb{R}}^N\) by a squeezing method involving boundary blow-up solutions. J. Lond. Math. Soc. 64(2), 107–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Y.H., Matsuzawa, H., Zhou, M.L.: Sharp estimate of the spreading speed determined by nonlinear free boundary problems. SIAM J. Math. Anal. 46, 375–396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ (1964)

    MATH  Google Scholar 

  15. Guo, J.S., Wu, C.H.: On a free boundary problem for a two-species weak competition system. J. Dyn. Differ. Equ. 24, 873–895 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hilhorst, D., Iida, M., Mimura, M., Ninomiya, H.: A competition-diffusion system approximation to the classical two-phase Stefan problem. Jpn. J. Ind. Appl. Math. 18(2), 161–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hilhorst, D., Mimura, M., Schätzle, R.: Vanishing latent heat limit in a Stefan-like problem arising in biology. Nonlinear Anal. Real World Appl. 4, 261–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaneko, Y., Yamada, Y.: A free boundary problem for a reaction diffusion equationa appearing in ecology. Adv. Math. Sci. Appl. 21(2), 467–492 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Academic Press, New York (1968)

    Google Scholar 

  20. Lin, Z.G.: A free boundary problem for a predator–prey model. Nonlinearity 20, 1883–1892 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mimura, M., Yamada, Y., Yotsutani, S.: A free boundary problem in ecology. Jpn. J. Appl. Math. 2, 151–186 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peng, R., Zhao, X.Q.: The diffusive logistic model with a free boundary and seasonal succession. Discret. Contin. Dyn. Syst. A 33(5), 2007–2031 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ricci, R., Tarzia, D.A.: Asymptotic behavior of the solutions of the dead-core problem. Nonlinear Anal. 13, 405–411 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rubinstein, L.I.: The Stefan Problem. American Mathematical Society, Providence, RI (1971)

    Google Scholar 

  25. Wang, M.X.: On some free boundary problems of the prey–predator model. J. Differ. Equ. 256(10), 3365–3394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, M.X.: The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differ. Equ. 258(4), 1252–1266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, M.X.: Spreading and vanishing in the diffusive prey–predator model with a free boundary. Commun. Nonlinear Sci. Numer. Simulat. 23, 311–327 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, M.X., Zhang, Y.: Two kinds of free boundary problems for the diffusive prey–predator model. Nonlinear Anal. 24, 73–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, M.X., Zhao, J.F.: Free boundary problems for a Lotka–Volterra competition system. J. Dyn. Differ. Equ. 16, 250–263 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Wang, M.X., Zhao, Y.G.: A semilinear parabolic system with a free boundary. Z. Angew. Math. Phys. (2015). doi:10.1007/s00033-015-0582-2

    MathSciNet  MATH  Google Scholar 

  31. Zhao, J.F., Wang, M.X.: A free boundary problem of a predator–prey model with higher dimension and heterogeneous environment. Nonlinear Anal. Real World Appl. 16(3), 250–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments and suggestions. This work was supported by NSFC Grant 11371113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxin Wang.

Appendix

Appendix

1.1 Global Estimate of the Solution w to (4.3)

Proposition 7.1

Let (uvgh) be any solution of (1.3) and assume \(h_\infty -g_\infty <\infty \). If w(ty) is the solution of (4.3), then there exists a constant \(K_0\) such that

$$\begin{aligned} \Vert w\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }([1,\infty )\times [-1,1])}<K_0. \end{aligned}$$
(7.1)

Proof

We are inspired by [1, Theorem A2]. For convenience, we denote \(\varphi _n(t)=\varphi (t+n), \psi _n=\psi (t+n,y), z_n=z(t+n,y), w_n=w(t+n,y)\). Let \(w(t+n,y)=a^n(t,y)+b^n(t,y)\), where \(a^n\) and \(b^n\) are solutions of

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} a^n_t=\varphi _n(t)a^n_{yy}, \ \ &{}t>0,-1<y<1,\\ a^n(t,-1)=a^n(t,1)=0,\ \ &{}t>0,\\ a^n(0,y)=w(n,y),&{}-1\le y\le 1 \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} b^n_t=\varphi _n(t)b^n_{yy}+\psi _nb^n_y+\psi _na^n_y+w_n(1-w_n+az_n), \ \ &{}t>0,-1<y<1,\\ b^n(t,-1)=b^n(t,1)=0, &{}t>0,\\ b^n(0,y)=0,&{}-1\le y\le 1, \end{array}\right. \end{aligned}$$

respectively. Let \(0<\lambda _1\le \lambda _2\le \cdots \) be the eigenvalues of the problem

$$\begin{aligned} -\phi _{yy}=\lambda \phi ,\ -1<y<1;\ \ \phi (-1)=\phi (1)=0, \end{aligned}$$

and let \(\phi _1,\phi _2,\cdots \) be the corresponding set of orthonormal eigenfunctions. We may express \(a^n\) as

$$\begin{aligned} a^n(t,y)=\sum \limits _{k\ge 1}\exp \left( -\lambda _k\int _0^t\varphi _n(s)ds\right) w^n_k\phi _k, \end{aligned}$$

where \(w^n_k=(\phi _k,w(n,\cdot ))_{L^2}\). In view of \(0<u\le M_1\) (cf. Lemma 2.1), it follows that

$$\begin{aligned} \left\| \displaystyle \frac{\partial ^{2j}a^n(T)}{\partial y^{2j}}\right\| _{L^2(-1,1)}^2= & {} \sum \limits _{k\ge 1}\lambda _k^{2j}\exp \displaystyle \left( -2\lambda _k\int _0^T\varphi _n(s)ds\right) (w^n_k)^2\\\le & {} \sup \limits _{\ell \ge 0}\left\{ \ell ^{2j}\exp \left( \frac{-8T\ell }{(h_\infty -g_\infty )^2}\right) \right\} \Vert w(n,x)\Vert _{L^2(-1,1)}^2\\\le & {} 2M_1^2\left( \displaystyle \frac{(h_\infty -g_\infty )^2j}{4T}\right) ^{2j}\mathrm{e}^{-2j}. \end{aligned}$$

Thanks to the \(L^p\) estimates and Sobolev’s imbedding theorem, we therefore have that \(\Vert a^n(t)\Vert _{C^2[-1,1]}\le K_1(1+t^{-j})\), where \(K_1\) is independent of n provided that \(j\ge 2\). From this last estimate and the differential equation satisfied by \(a^n\), we obtain \(\Vert a^n_t(t)\Vert _{C[-1,1]}\le K_1h_0^{-2}(1+t^{-j})\). Hence, there exists positive constant \(K_2\) such that \(\Vert a^n\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }(E_1)}<K_2\), where \(E_1=[{1\over 2},2]\times [-1,1]\) and \(K_2\) depends only on \(K_1\) and \(E_1\).

Next we estimate \(b^n\). It is obvious that the function \(c^n=\mathrm{e}^{-\frac{1}{t}}b^n\) satisfies

$$\begin{aligned} \left\{ \begin{array}{ll} c^n_t=\varphi _n(t)c^n_{yy}+\psi _nc^n_y+f_n(t,x), \ \ &{}t>0,-1<y<1,\\ b^n(t,-1)=b^n(t,1)=0, &{}t>0,\\ b^n(0,y)=0,&{}-1\le y\le 1, \end{array}\right. \end{aligned}$$

where \(f_n(0,x)=0\) and

$$\begin{aligned} f_n(t,x)=t^{-2}\mathrm{e}^{-\frac{1}{t}}w_n+(\psi _n+t^{-2}) \mathrm{e}^{-\frac{1}{t}}a^n_y+\mathrm{e}^{-\frac{1}{t}}w_n(1-w_n+az_n),\ t>0. \end{aligned}$$

Note that \(\lim \limits _{t\rightarrow 0^+}\displaystyle t^{-j}\mathrm{e}^{-\frac{1}{t}}=0\) for any \(j>0\), we have \(f_n(t,x)\) is continuous in \(E=[0,3]\times [-1,1]\) and \(\Vert f_n\Vert _{C(E)}\le K_3\) where \(K_3\) is dependent on \(K_1\) and independent of n. By using of [14, Theorem 4,p191], we can obtain that \(\Vert c^n\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }(E_1)}<\tilde{K}_3\) where \(\tilde{K}_3\) depends on \(K_3\). It follows that \(\Vert b^n\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }(E_1)}<K_4\). We therefore have that

$$\begin{aligned} \Vert w\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }(E_n)}\le \Vert a^n\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }(E_1)}+\Vert b^n\Vert _{C^{\frac{1+\alpha }{2},1+\alpha }(E_1)} <K_2+K_4=K_0, \end{aligned}$$

where \(E_n=[n+\frac{1}{2},n+2]\times [-1,1]\). It easily to get (7.1) since the intervals \(E_n\) overlap and \(K_0\) is independent of n. \(\square \)

1.2 Estimates of Solutions to Parabolic Partial Differential Inequalities

Let \(d,\beta \) and \(\theta \) be fixed positive constants. In order to investigate the long time behavior of the solution (uv) to (1.3), we should prove the following proposition.

Proposition 8.1

Let k be a non-negative constant. For any given \(\varepsilon , L>0\), there exist \(T_\varepsilon >0\) and \(l_\varepsilon >\max \big \{L,\frac{\pi }{2}\sqrt{d/\beta }\big \}\), such that when the continuous and non-negative function z(tx) satisfies

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} z_t-dz_{xx}\ge \, (\le )\, z(\beta -\theta z), \ \ &{}t>0, \ \ -l_\varepsilon <x<l_\varepsilon ,\\ z(0,x)>0, &{}-l_\varepsilon <x<l_\varepsilon , \end{array}\right. \end{aligned}$$

and for \(t>0\), \(z(t,\pm l_\varepsilon )\ge \, (\le )\, k\) if \(k>0\), while \(z(t,\pm l_\varepsilon )\ge \, (=)\, 0\) if \(k=0\), then we have

$$\begin{aligned} z(t,x)>\beta /\theta -\varepsilon \ \ \big (z(t,x)<\beta /\theta +\varepsilon \big ), \ \ \ \forall \ t\ge T_\varepsilon , \ \ x\in [-L,L]. \end{aligned}$$

This implies

$$\begin{aligned} \liminf _{t\rightarrow \infty }z(t,x)\ge \beta /\theta -\varepsilon \ \ \left( \limsup _{t\rightarrow \infty }z(t,x)<\beta /\theta +\varepsilon \right) \ \ \ \hbox {uniformly on }\, [-L,L]. \end{aligned}$$

Proof

Let \(l>\frac{\pi }{2}\sqrt{d/\beta }\) be a parameter, and \(z_l(x)\) the unique positive solution of

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -dz_{xx}=z(\beta -\theta z),\ \ -l<x<l,\\ z(\pm l)=k. \end{array}\right. \end{aligned}$$
(8.1)

(refer to the proof of Lemma 2.3 in [12]). We claim that

$$\begin{aligned} \lim _{l\rightarrow \infty }z_l(x)=\beta /\theta \ \ \hbox { uniformly in any compact subset of} \, \ {\mathbb {R}}. \end{aligned}$$
(8.2)

For the case \(k>\beta /\theta \). By the maximum principle we see that \(\beta /\theta \le z_l(x)\le k\) for all \(x\in [-l,l]\). Note that \(z_l(x)\le k\), by the comparison principle we have that \(z_l(x)\) is decreasing in l. Therefore, the limit \(\lim _{l\rightarrow \infty }z_l(x)=z(x)\) exists, and \(z(x)\ge \beta /\theta \) and z(x) satisfies

$$\begin{aligned} -dz_{xx}=z(\beta -\theta z),\ \ x\in {\mathbb {R}}. \end{aligned}$$

By Theorem 1.2 of [12], \(z(x)\equiv \beta /\theta \). Using the interior estimate we assert that \(\lim _{l\rightarrow \infty }z_l(x)=z(x)\) uniformly in any compact subset of \({\mathbb {R}}\). Hence (8.2) holds.

For the case \(k\le \beta /\theta \). Choose \(k_0>\beta /\theta \) and let \(z_l^0\) be the unique positive solution of (8.1) with \(k=k_0\). By the comparison principle we have \(w_l(x)\le z_l(x)\le z_l^0(x)\) in \([-l,l]\), where \(w_l(x)\) is the unique positive solution of

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -dw_{xx}=w(\beta -\theta w),\ \ -l<x<l,\\ w(\pm l)=0. \end{array}\right. \end{aligned}$$

with \(l>\frac{\pi }{2}\sqrt{d/\beta }\). By Lemma 2.2 of [12], \(\lim _{l\rightarrow \infty }w_l(x)=\beta /\theta \) uniformly in any compact subset of \({\mathbb {R}}\). Take into account the result we have proved in the above, it is deduced that (8.2) holds.

In view of (8.2), for any given \(L>0\) and \(\varepsilon >0\), there is \(l_\varepsilon >\max \big \{L,\frac{\pi }{2}\sqrt{d/\beta }\big \}\), which also depends on \(d,\beta ,\theta \) and k, such that

$$\begin{aligned} \beta /\theta -\varepsilon /2<z_l(x)<\beta /\theta +\varepsilon /2, \ \ \ \forall \ l\ge l_\varepsilon , \ x\in [-L,L]. \end{aligned}$$
(8.3)

Let \(z_0(x)\in C([-l_\varepsilon ,l_\varepsilon ])\) be a positive function and \(z_\varepsilon (t,x)\) be the solution of

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} z_{t}-dz_{xx}=z(\beta -\theta z), \ \ &{}t>0, \ \ -l_\varepsilon <x<l_\varepsilon ,\\ z(t,\pm l_\varepsilon )=k,&{}t\ge 0,\\ z(0,x)=z_0(x),&{}-l_\varepsilon \le x\le l_\varepsilon . \end{array}\right. \end{aligned}$$

Recall \(l_\varepsilon >\frac{\pi }{2}\sqrt{d/\beta }\), we shall illustrate that

$$\begin{aligned} \displaystyle \lim _{t\rightarrow \infty } z_\varepsilon (t,x)=z_{l_\varepsilon }(x)\ \ \hbox { uniformly in the compact subset of} \ \ (-l_\varepsilon ,l_\varepsilon ). \end{aligned}$$
(8.4)

In fact, take a positive constant q and let \(\phi _q(t,x)\) be the unique solution of

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} \phi _t-d \phi _{xx}=\phi (\beta -\theta \phi ), \ \ &{}t>0, \ \ -l_\varepsilon <x<l_\varepsilon ,\\ \phi (t,\pm l_\varepsilon )=k,&{}t\ge 0,\\ \phi (0,x)=q,&{}-l_\varepsilon \le x\le l_\varepsilon . \end{array}\right. \end{aligned}$$

Let \(M\gg 1\) and \(0<m\ll 1\). Then M and m are the ordered upper and lower solutions of (8.1) with \(l=l_\varepsilon \). Therefore, \(\phi _M(t,x)\) is monotone decreasing and \(\phi _m(t,x)\) is monotone increasing in t. So, the limits \(\lim _{t\rightarrow \infty }\phi _M(t,x)=\phi _M(x)\) and \(\lim _{t\rightarrow \infty }\phi _m(t,x)=\phi _m(x)\) exist, and they are all positive solution of (8.1) with \(l=l_\varepsilon \). Hence, \(\phi _M(x)=\phi _m(x)=z_{l_\varepsilon }(x)\). Meanwhile, the comparison principle yields \(\phi _m(t,x)\le z_\varepsilon (t,x)\le \phi _M(t,x)\). Consequently, \(\lim _{t\rightarrow \infty } z_\varepsilon (t,x)=z_{l_\varepsilon }(x)\). By use of the interior estimate, it can be shown that this limit converges uniformly in the compact subset of \((-l_\varepsilon ,l_\varepsilon )\).

Thanks to (8.3) and (8.4), there is \(T_\varepsilon \gg 1\) such that

$$\begin{aligned} \beta /\theta -\varepsilon <z_\varepsilon (t,x)<\beta /\theta +\varepsilon , \ \ \ \forall \ t\ge T_\varepsilon , \ \ x\in [-L,L]. \end{aligned}$$

By sue of this fact and the comparison principle, the proof is immediately completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhao, J. A Free Boundary Problem for the Predator–Prey Model with Double Free Boundaries. J Dyn Diff Equat 29, 957–979 (2017). https://doi.org/10.1007/s10884-015-9503-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9503-5

Keywords

Mathematics Subject Classification

Navigation