Skip to main content
Log in

Hopf Bifurcation for Retarded Functional Differential Equations and for Semiflows in Banach Spaces

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We indicate how a Hopf bifurcation theorem for retarded functional differential equations can be proved correctly, following an approach that is described, but not carried out properly in the literature. Then we state and prove a Hopf bifurcation theorem for general semiflows in Banach spaces, using different methods. The general statement includes the case of retarded functional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amann, H.: Ordinary Differential Equations. Walter de Gruyter, Berlin (1990)

    Book  MATH  Google Scholar 

  2. Amann, H., Escher, J.: Analysis III. Birkhäuser Verlag, Basel (2001)

    Book  MATH  Google Scholar 

  3. Andronov, A.A.: Les cycles limites de Poincaré et la théorie des oscillations auto-entretenues. Comptes Rendus des Scéances de l’ Académie des Sciences 189, 559–561 (1929)

    Google Scholar 

  4. Andronov, A.A., Chaikin, C.E.: Theory of Oscillations. Princeton University Press, Princeton (1949)

    Google Scholar 

  5. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple Eigenvalues, and Linearized stability. Arch. Ration. Mech. Anal. 52(2), 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal. 67(1), 53–72 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diekmann, O., van Gils, S.A., Verduyn-Lunel, S.N., Walther, H.O.: Delay Equations. Applied Mathematical Sciences 110. Springer, New York (1995)

    Google Scholar 

  8. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)

    MATH  Google Scholar 

  9. Eichmann, M.: A local Hopf Bifurcation Theorem for differential equations with state-dependent delays, doctoral dissertation, Justus-Liebig-Universität Giessen. http://geb.uni-giessen.de/geb/volltexte/2006/2844/pdf/EichmannMarkus-2006-02-02.pdf. (2006)

  10. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122(2), 181–200 (1995)

    Article  MATH  Google Scholar 

  11. Greiner, W.: Quantenmechanik, Teil 1 Einführung, 5th edn. Verlag Harri Deutsch, Frankfurt am Main (1992)

    MATH  Google Scholar 

  12. Hale, J.K.: Theory of Functional Differential Equations. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  13. Hale, J.K., Verduyn-Lunel, S.M.: Introduction to Functional Differential Equations, Applied Mathematical Sciences 99. Springer, New York (1993)

    Book  Google Scholar 

  14. Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series 41. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  15. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialglei-chungssystems, Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Naturwissenschaftliche Klasse. Band 94, 3–23 (1942)

    Google Scholar 

  16. Irwin, M.C.: Smooth Dynamical Systems. Academic Press, London (1980)

    MATH  Google Scholar 

  17. Jänich, K.: Topologie, 6th edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Krasnosel’skii, A.M., Rachinskii, D.I.: Remark on the Hopf bifurcation theorem. Math. Nachr. 272(1), 95–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Z., Magal, P., Ruan, S.: Hopf bifurcation for non-densely defined Cauchy problems. Z. Angew. Math. Phys. 62(2), 191–222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lani-Wayda, B.: Persistence of Poincaré mappings in functional differential equations (with application to structural stability of complicated behavior). J. Dyn. Differ. Equ. 7(1), 1–71 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel (1995)

    Book  MATH  Google Scholar 

  22. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)

    Book  MATH  Google Scholar 

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  24. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, Tome I. Gauthier-Villars, Paris (1892)

    Google Scholar 

  25. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Part IV: Analysis of operators. Academic Press, New York (1978)

    Google Scholar 

  26. Rudin, W.: Real and Complex Analysis. McGraw-Hill, Singapore (1987)

    MATH  Google Scholar 

  27. Schumacher, K.: Hopf bifurcation with constraints. Nonlinear Anal. 7(12), 1389–1409 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  29. Terschlüsen, C.: Hopf-Verzweigung bei Funktionaldifferentialgleichungen mit Symmetrie, diploma thesis, Justus-Liebig-Universität Gießen (2010)

  30. Wilhelm, T., Heinrich, R.: Smallest chemical reaction with Hopf bifurcation. J. Math. Chem. 17(1), 1–14 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1991)

    Google Scholar 

  32. Wu, J.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350(12), 4799–4838 (1998)

    Article  MATH  Google Scholar 

  33. Yoshida, K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12(2), 321–348 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Without Carla Terschlüsen’s initial contribution, namely her discovery of inaccuracies in [12, 32] and [13], the present paper would not exist. Warm thanks to her for inspiring the start of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Lani-Wayda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lani-Wayda, B. Hopf Bifurcation for Retarded Functional Differential Equations and for Semiflows in Banach Spaces. J Dyn Diff Equat 25, 1159–1199 (2013). https://doi.org/10.1007/s10884-013-9334-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9334-1

Keywords

Mathematics Subject Classification (2010)

Navigation