Skip to main content
Log in

Schoenflies Spheres as Boundaries of Bounded Unstable Manifolds in Gradient Sturm Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Let \(v\) be a hyperbolic equilibrium of a smooth finite-dimensional gradient or gradient-like dynamical system. Assume that the unstable manifold \(W\) of \(v\) is bounded, with topological boundary \(\Sigma = \partial \!W:= (clos W)\backslash W\). Then \(\Sigma \) need not be homeomorphic to a sphere, or to any compact manifold. However, consider PDEs

$$\begin{aligned} u_{t} = u_{xx} + f(x,u,u_x) \end{aligned}$$

of Sturm type, i.e. scalar reaction–advection–diffusion equations in one space dimension. Under separated boundary conditions on a bounded interval this defines a gradient dynamical system. For such gradient Sturm systems, we show that the eigenprojection P \(\Sigma \) of \(\Sigma \) onto the unstable eigenspace of \(v\) is homeomorphic to a sphere. In particular this excludes complications like lens spaces and Reidemeister torsion. Excluding Schoenflies complications like Alexander horned spheres, we also show that both the interior domain \(PW\) of P \(\Sigma \) and the one-point compactified exterior domain in the tangential eigenspace are homeomorphic to open balls. Our results are based on Sturm nodal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agmon, S.: Unicité et convexité dans les problèmes différentiels. Les Presses de l’Université de Montréal, Montreal (1966)

    MATH  Google Scholar 

  2. Alexander, J.W.: An example of a simple connected surface bounding a region which is not simply connected. Natl. Acad. Proc. 10, 8–10 (1924)

    Article  Google Scholar 

  3. Angenent, S.: The Morse–Smale property for a semi-linear parabolic equation. J. Diff. Equat. 62, 427–442 (1986)

    Google Scholar 

  4. Angenent, S.: The zero set of a solution of a parabolic equation. Crelle J. Reine Angew. Math. 390, 79–96 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Tartar, L.: Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines. Arch. Ration. Mech. Analysis 50, 10–25 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  7. Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Am. Math. Soc. 66, 74–76 (1960)

    Article  MATH  Google Scholar 

  8. Brunovský, P.: The attractor of the scalar reaction diffusion equation is a smooth graph. J. Dyn. Diff. Equat. 2(3), 293–323 (1990)

    Google Scholar 

  9. Brunovský, P., Fiedler, B.: Numbers of zeros on invariant manifolds in reaction–diffusion equations. Nonlinear Analysis TMA 10, 179–194 (1986)

    Article  MATH  Google Scholar 

  10. Brunovský, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations. Dyn. Rep. 1, 57–89 (1988)

    Article  Google Scholar 

  11. Brunovský, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations II: the complete solution. J. Diff. Equat. 81, 106–135 (1989)

    Google Scholar 

  12. Chafee, N., Infante, E.: A bifurcation problem for a nonlinear parabolic equation. J. Appl. Analysis 4, 17–37 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, M., Chen, X.-Y., Hale, J.K.: Structural stability for time-periodic one-dimensional parabolic systems. J. Diff. Equat. 96, 355–418 (1992)

    Google Scholar 

  14. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. AMS Colloquium Publications, Providence (2002)

    MATH  Google Scholar 

  15. Conley, C.C., Smoller, J.: Algebraic and topological invariants for reaction–diffusion equations. In: Systems of Nonlinear Partial Differential Equations, pp. 3–24. Oxford (1982). NATO Advanced Study Institute, Series C: Mathematics and Physical Sciences, vol. 111. Reidel, Dordrecht (1983)

  16. Dancer, E.N., Poláčik, P.: Realization of vector fields and dynamics of spatially homogeneous parabolic equations, vol. 668. Memoirs of the American Mathematical Society, Providence (1999)

  17. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Wiley, Chichester (1994)

    MATH  Google Scholar 

  18. Fiedler, B., Mallet-Paret, J.: Connections between Morse sets for delay-differential equations. J. Reine Angew. Math. 397, 23–41 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Fiedler, B., Mallet-Paret, J.: A Poincaré–Bendixson theorem for scalar reaction diffusion equations. Arch. Ration. Mech. Analysis 107, 325–345 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fiedler, B., Rocha, C.: Heteroclinic orbits of semilinear parabolic equations. J. Diff. Equat. 125, 239–281 (1996)

    Google Scholar 

  21. Fiedler, B., Rocha, C.: Realization of meander permutations by boundary value problems. J. Diff. Equat. 156, 282–308 (1999)

    Google Scholar 

  22. Fiedler, B., Rocha, C.: Orbit equivalence of global attractors of semilinear parabolic differential equations. Trans. Am. Math. Soc. 352, 257–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fiedler, B., Rocha, C.: Connectivity and design of planar global attractors of Sturm type. II: connection graphs. J. Diff. Equat. 244, 1255–1286 (2008)

    Google Scholar 

  24. Fiedler, B., Rocha, C.: Connectivity and design of planar global attractors of Sturm type. I: orientations and Hamiltonian paths. Crelle. J. Reine. Angew. Math. 635, 71–96 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Fiedler, B., Rocha, C.: Connectivity and design of planar global attractors of Sturm type. III: small and platonic examples. J. Dyn. Diff. Equat. 22, 121–162 (2010)

    Google Scholar 

  26. Fiedler, B., Scheel, A., et al.: Spatio-temporal dynamics of reaction–diffusion patterns. In: Kirkilionis, M. (ed.) Trends in Nonlinear Analysis, pp. 23–152. Springer, Berlin (2003)

    Chapter  Google Scholar 

  27. Fiedler, B., Rocha, C., Wolfrum, M.: Heteroclinic connections of \(S^1\)-equivariant parabolic equations on the circle. J. Diff. Equat. 201, 99–138 (2004)

    Google Scholar 

  28. Fiedler, B., Grotta-Ragazzo, C., Rocha, C.: An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle (2012, submitted)

  29. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs (1964)

    MATH  Google Scholar 

  30. Fusco, G., Oliva, W.M.: Jacobi matrices and transversality. Proc. R. Soc. Edinb. A 109, 231–243 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fusco, G., Rocha, C.: A permutation related to the dynamics of a scalar parabolic PDE. J. Diff. Equat. 91, 75–94 (1991)

    Google Scholar 

  32. Hale, J.K. (1988) Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25. AMS Publications, Providence

  33. Hale, J.K., Magalhães, L.T., Oliva, W.M.: Dynamics in Infinite Dimensions. Springer, New York (2002)

    Book  MATH  Google Scholar 

  34. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  35. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics,, vol. 804. Springer, New York (1981)

  36. Henry, D.: Some infinite dimensional Morse–Smale systems defined by parabolic differential equations. J. Diff. Equat. 59, 165–205 (1985)

    Google Scholar 

  37. Hirsch, M.W.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  38. Hirsch, M.W.: Stability and convergence in strongly monotone dynamical systems. Crelle J. Reine Angew. Math. 383, 1–58 (1988)

    MATH  Google Scholar 

  39. Jolly, M.S.: Explicit construction of an inertial manifold for a reaction diffusion equation. J. Diff. Equat. 78, 220–261 (1989)

    Google Scholar 

  40. Ladyzhenskaya, O.A.: Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  41. Lax, P.D.: A stabilitiy theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations. Commun. Pure Appl. Math. 9, 747–766 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lions, J.L., Malgrange, B.: Sur l’unicité rétrograde dans les problémes mixtes paraboliques. Math. Scand. 8, 277–286 (1960)

    MathSciNet  Google Scholar 

  43. Mallet-Paret, J.: Morse decompositions for delay-differential equations. J. Diff. Equat. 72, 270–315 (1988)

    Google Scholar 

  44. Mallet-Paret, J., Sell, G.R.: The Poincaré–Bendixson theorem for monotone cyclic feedback systems with delay. J. Diff. Equat. 125, 441–489 (1996)

    Google Scholar 

  45. Mallet-Paret, J., Sell, G.R.: Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J. Diff. Equat. 125, 385–440 (1996)

    Google Scholar 

  46. Mallet-Paret, J., Smith, H.: The Poincaré–Bendixson theorem for monotone cyclic feedback systems. J. Diff. Equat. 4, 367–421 (1990)

    Google Scholar 

  47. Matano, H.: Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation. J. Fac. Sci. Univ. Tokyo IA 29, 401–441 (1982)

    Google Scholar 

  48. Matano, H.: Strongly order-preserving local semi-dynamical systems—theory and applications. In: Brezis, H., Crandall, M.G., Kappel, F. (eds.) Semigroups, Theory and Applications, pp. 178–189. Wiley, New York (1986)

    Google Scholar 

  49. Matano, H.: Strong comparison principle in nonlinear parabolic equations. In: Bocardo, L., Tesel A., (eds.) Nonlinear Parabolic Equations: Qualitative Properties of Solutions, Pitman Research Notes in Mathematics Series, vol. 149, pp. 148–155 (1987)

  50. Matano, H.: Asymptotic behavior of solutions of semilinear heat equations on \(S^{1}\). In: Ni, W.-M., Peletier, L.A., Serrin, J. (eds.) Nonlinear Diffusion Equations and their Equilibrium States II. Springer, New York (1988)

    Google Scholar 

  51. Matano, H., Nakamura, K.-I.: The global attractor of semilinear parabolic equations on \({S^1}\). Discret. Contin. Dyn. Syst. 3, 1–24 (1997)

    MathSciNet  MATH  Google Scholar 

  52. Mazur, B.: On embeddings of spheres. (English). Bull. Am. Math. Soc. 65, 59–65 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  53. Morse, M.: A reduction of the Schoenflies extension problem. Bull. Am. Math. Soc. 66, 113–115 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nadirashvili, N.S.: On the dynamics of nonlinear parabolic equations. Soviet Math. Dokl. 40, 636–639 (1990)

    MathSciNet  MATH  Google Scholar 

  55. Palis, J.: On Morse–Smale dynamical systems. Topology 8, 385–404 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  56. Palis, J., Smale, S.: Structural stability theorems. In: Chern, S., Smale, S. (eds) Global Analysis. Proceedings of Symposia in Pure Mathematics, vol. XIV. AMS, Providence (1970)

  57. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. An Introduction. Springer, New York (1983)

    Google Scholar 

  58. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  59. Poláčik, P.: High-dimensional \(\omega \)-limit sets and chaos in scalar parabolic equations. J. Diff. Equat. 119, 24–53 (1995)

    Google Scholar 

  60. Polya, G.: Qualitatives über Wärmeaustausch. Z. Angew. Math. Mech. 13, 125–128 (1933)

    Article  Google Scholar 

  61. Prizzi, M., Rybakowski, K.P.: Complicated dynamics of parabolic equations with simple gradient dependence. Trans. Am. Math. Soc. 350, 3119–3130 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Prizzi, M., Rybakowski, K.P.: Inverse problems and chaotic dynamics of parabolic equaitons on arbitrary spatial domains. J. Diff. Equat. 142, 17–53 (1998)

    Google Scholar 

  63. Raugel, G.: Global attractors. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 885–982. Elsevier, Amsterdam (2002)

    Google Scholar 

  64. Reidemeister, K.: Homotopieringe und Linsenräume. Abh. Math. Semin. Univ. Hambg. 11, 102–109 (1935)

    Article  MathSciNet  Google Scholar 

  65. Rocha, C.: Properties of the attractor of a scalar parabolic PDE. J. Dyn. Diff. Equat. 3, 575–591 (1991)

    Google Scholar 

  66. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)

    Book  MATH  Google Scholar 

  67. Smith, H.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. AMS, Providence (1995)

    MATH  Google Scholar 

  68. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  69. Sturm, C.: Sur une classe d’équations à différences partielles. J. Math. Pure Appl. 1, 373–444 (1836)

    Google Scholar 

  70. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  71. Wolf, J.A.: Spaces of Constant Curvature. AMS Chelsea Publishing, Providence (2011)

    MATH  Google Scholar 

  72. Zelenyak, T.I.: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Diff. Equat. 4, 17–22 (1968)

    Google Scholar 

Download references

Acknowledgments

We are indebted to the late Floris Takens for cautioning us against the Reidemeister intricacy in the study of unstable manifolds of gradient systems. We are also grateful to Björn Sandstede and Matthias Wolfrum for sustained two-fold advice and encouragement: insisting that the problem was quite easy, but not spoiling our excitement by providing too many hints. The referee has helped with very diligent care and insight. Finally, we gratefully acknowledge mutual hospitality during extensive productive visits. This work was supported by the Deutsche Forschungsgemeinschaft, SFB 647 “Space–Time–Matter” and by FCT Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernold Fiedler.

Additional information

Dedicated to the memory of Klaus Kirchgässner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, B., Rocha, C. Schoenflies Spheres as Boundaries of Bounded Unstable Manifolds in Gradient Sturm Systems. J Dyn Diff Equat 27, 597–626 (2015). https://doi.org/10.1007/s10884-013-9311-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9311-8

Keywords

Navigation