Skip to main content
Log in

Strong Unique Continuation for the Navier–Stokes Equation with Non-Analytic Forcing

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We establish the strong unique continuation property for differences of solutions to the Navier–Stokes system with Gevrey forcing. For this purpose, we provide Carleman-type inequalities with the same singular weight for the Laplacian and the heat operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albano, P., Tataru, D.: Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system. Electron. J. Differ. Equ. 22, 15 (electronic) (2000)

    Google Scholar 

  2. Constantin, P.: Navier–Stokes equations and area of interfaces. Commun. Math. Phys. 129(2), 241–266 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constanti, P., Foias, C., Kukavica, I., Majda, A.J.: Dirichlet quotients and 2D periodic Navier–Stokes equations. J. Math. Pures Appl. 76(2), 125–153 (1997)

    MathSciNet  Google Scholar 

  4. Colombini, F., Grammatico, C., Tataru, D.: Strong uniqueness for second order elliptic operators with Gevrey coefficients. Math. Res. Lett. 13(1), 15–27 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Carleman, T.: Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys. 26(17), 9 (1939)

    MathSciNet  Google Scholar 

  6. Colombini, F., Koch, H.: Strong unique continuation for products of elliptic operators of second order. Trans. Am. Math. Soc. 362(1), 345–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escauriaza, L., Fernández, F.J., Vessella, S.: Doubling properties of caloric functions. Appl. Anal. 85(1–3), 205–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escauriaza, L., Seregin, G., Šverák, V.: Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169(2), 147–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabre, C., Lebeau, G.: Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21(3–4), 573–596 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87(2), 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grujić, Z., Kukavica, I.: Space analyticity for the Navier–Stokes and related equations with initial data in \(L^p\). J. Funct. Anal. 152(2), 447–466 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joly, R., Raugel, G.: Generic Morse–Smale property for the parabolic equation on the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(6), 1397–1440 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, Q.: Schauder estimates for elliptic operators with applications to nodal sets. J. Geom. Anal. 10(3), 455–480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer, Berlin, 1994, Pseudo-differential operators, Corrected reprint of the 1985 original

  16. Han, Q., Lin, F.: Elliptic Partial Differential Equations, 2nd ed., Courant Lecture Notes in Mathematics, vol. 1. Courant Institute of Mathematical Sciences, New York (2011)

    Google Scholar 

  17. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Han, Q., Hardt, R., Lin, F.: Singular sets of higher order elliptic equations. Commun. Partial Differ. Equ. 28(11–12), 2045–2063 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Isakov, V.: Carleman type estimates in an anisotropic case and applications. J. Differ. Equ. 105(2), 217–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ignatova, M., Kukavica, I.: Strong unique continuation for higher order elliptic equations with Gevrey coefficients. J. Differ. Equ. 252(4), 2983–3000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ignatova, M., Kukavica, I.: Unique continuation and complexity of solutions to parabolic partial differential equations with Gevrey coefficients. Adv. Differ. Equ. 15(9–10), 953–975 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. (2) 121 (1985), no. 3, 463–494, With an appendix by E. M. Stein.

  23. Kenig, C.E.: Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, Harmonic Analysis and Partial Differential Equations (El Escorial, : Lecture Notes in Mathematics, vol. 1384. Springer, Berlin 1989, 69–90 (1987)

  24. Kenig, C.E.: Some recent applications of unique continuation. Recent developments in nonlinear partial differential equations, Contemporary Mathematics, vol. 439, American Mathematical Society, Providence, RI, 2007, pp. 25–56

  25. Kenig, C.E.: Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy’s uncertainty principle, Perspectives in partial differential equations, harmonic analysis and applications. In: Proceedings of the Symposia in Pure Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2008, pp. 207–227

  26. Kukavica, I.: Self-similar variables and the complex Ginzburg–Landau equation. Commun. Partial Differ. Equ. 24(3–4), 545–562 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kukavica, I.: Length of vorticity nodal sets for solutions of the 2D Navier–Stokes equations. Commun. Partial Differ. Equ. 28(3–4), 771–793 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kukavica, I.: Spatial complexity of solutions of higher order partial differential equations. Nonlinearity 17(2), 459–476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kukavica, I.: Log–log convexity and backward uniqueness. Proc. Am. Math. Soc. 135(8):2415–2421 (electronic) (2007)

    Google Scholar 

  30. Kurata, K.: On a backward estimate for solutions of parabolic differential equations and its application to unique continuation, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 247–257

  31. Kuksin, S.B.: Remarks on the balance relations for the two-dimensional Navier–Stokes equation wtih random forcing. J. Stat. Phys. 122(1), 101–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukavica, I., Robinson, J.C.: Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem. Phys. D 196(1–2), 45–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, F.H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44(3), 287–308 (1991)

    Article  MATH  Google Scholar 

  34. Lin, C.L., Uhlmann, G., Wang, J.N.: Optimal three-ball inequalities and quantitative uniqueness for the Stokes system. Discret. Contin. Dyn. Syst. 28(3), 1273–1290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66(1), 118–139 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vessella, S.: Carleman estimates, optimal three cylinder inequalities and unique continuation properties for parabolic operators. Progress in Analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, pp. 485–492 (2003)

Download references

Acknowledgments

The authors thank referees for useful remarks and suggestions. MI was supported in part by the NSF Grant DMS-1009769 and the NSF FRG Grant DMS-11589, while IK was supported in part by the NSF Grant DMS-1009769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Ignatova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatova, M., Kukavica, I. Strong Unique Continuation for the Navier–Stokes Equation with Non-Analytic Forcing. J Dyn Diff Equat 25, 1–15 (2013). https://doi.org/10.1007/s10884-012-9282-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9282-1

Keywords

Navigation