Skip to main content
Log in

Reducible Volterra and Levin–Nohel Retarded Equations with Infinite Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider two cases of reducible Volterra and Levin–Nohel retarded equations with infinite delay. In these cases reducibility arises from the use of a special type of memory functions with an exponential behavior. We address global questions like the existence of Liapunov functions and, consequently, of attractors for the nonlinear systems generated by these equations as well as the attractors for the reduced systems. For the reducible Volterra equations we exhibit cases of nontrivial Hamiltonian behaviour and for the reducible Levin–Nohel equation we identify Hopf and saddle connection bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busenberg, S.N., Travis, C.C.: Approximation of functional differential equations by differential systems. In: Hannsgen, K.B., Herdman, T.L., Stech, H.W., Wheeler, R.H. (eds.) Volterra and Functional Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 81, pp. 197–405. Marcel Dekker, Inc., New York (1982)

  2. Busenberg S.N, Travis C.C.: On the use of reducible functional differential equations in biological models. J. Math. Anal. Appl. 89, 46–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chicone C.: Inertial and slow manifolds for delay equations with small delays. J. Differ. Equ. 190(2), 364–406 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chicone C.: Inertial flows, slow flows, and combinatorial identities for delay equations. J. Dynam. Differ. Equ. 16(2), 805–831 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duarte P., Fernandes R.L., Oliva W.M.: Dynamics of the attractor in the Lotka–Volterra equations. J. Differ. Equ. 149, 143–189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ergen W.K.: Kinetics of the circular fuel reactor. J. Appl. Phys. 25, 702–711 (1954)

    Article  MATH  Google Scholar 

  7. Fargue D.: Réductibilité des systèmes héréditaires à des systèmes dynamiques. C. R. Acad. Sci. Paris Ser. B 277, 471–473 (1973)

    MathSciNet  Google Scholar 

  8. Fargue D.: Réductibilité des systèmes héréditaires. Int. J. Non-Linear Mech. 9, 331–338 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hale J., K.: Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 3. Springer-Verlag, New York (1977)

  10. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Math. Surv., vol. 25. AMS Publications, Providence (1988)

  11. Hale J.K., Rybakowsky K.P.: On a gradient-like integro-differential equation. Proc. R. Soc. Edinburgh 92A, 77–85 (1982)

    Google Scholar 

  12. Hale, J.K., Magalhães, L.T., Oliva, W.M.: Dynamics in Infinite Dimensions. 2nd edn. Applied Mathematical Sciences, vol. 47. Springer-Verlag, New York (2002)

  13. Hines G.: Upper semicontinuity of the attractor with respect to parameter dependent delays. J. Differ. Equ. 123, 56–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes in Math, vol. 1473. Springer-Verlag, New York (1991)

  15. Levin J.J., Nohel J.A.: On a nonlinear delay equation. J. Math. Anal. Appl. 8, 31–44 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurzweil, J.: Small Delays Don’t Matter. In Lecture Notes in Math., vol. 206. Springer-Verlag, New York (1971)

  17. MacDonald, N.: Time Lags in Biological Models. Lecture Notes in Biomath., vol. 27. Springer-Verlag, Berlin/New York (1978)

  18. Redheffer R., Walter W.: Solution of the stability problem for a class of generalized Volterra predator–prey systems. J. Differ. Equ. 52, 245–263 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Redheffer R., Zhiming Z.: A class of matrices connected with Volterra predator–prey equations. SIAM J. Algebra Discrete Methods 3, 122–134 (1982)

    Article  MATH  Google Scholar 

  20. Vogel T.: Théorie des systèmes évolutifs. Gauthier-Villars, Paris (1965)

    MATH  Google Scholar 

  21. Volterra V.: Sur la théorie mathématique des phénomènes héréditaires. J. Math. Pures Appl. 7, 249–298 (1928)

    Google Scholar 

  22. Wörz-Busekros A.: Global stability in ecological systems with continuous time delay. SIAM J. Appl. Math. 35, 123–134 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldyr M. Oliva.

Additional information

This paper is dedicated to Professor Jack Hale on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva, W.M., Rocha, C. Reducible Volterra and Levin–Nohel Retarded Equations with Infinite Delay. J Dyn Diff Equat 22, 509–532 (2010). https://doi.org/10.1007/s10884-010-9177-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9177-y

Keywords

Navigation