Skip to main content
Log in

Centers and Isochronous Centers for Two Classes of Generalized Seventh and Ninth Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We classify new classes of centers and of isochronous centers for polynomial differential systems in \({\mathbb R^2}\) of arbitrary odd degree d ≥ 7 that in complex notation z = x + i y can be written as

$$\dot z = (\lambda+i) z + (z \overline z)^{\frac{d-7-2j}2} \left(A z^{5+j} \overline z^{2+j} + B z^{4+j} \overline z^{3+j} + C z^{3+j} \overline z^{4+j}+D \overline z^{7+2j} \right),$$

where j is either 0 or \({1, \lambda \in \mathbb R}\) and \({A,B,C \in \mathbb C }\) . Note that if j = 0 and d = 7 we obtain a special case of seventh polynomial differential systems which can have a center at the origin, and if j = 1 and d = 9 we obtain a special case of ninth polynomial differential systems which can have a center at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G.: Theory of Bifurcations of Dynamic Systems on a Plane. Wiley, Nova York–Toronto (1973)

    Google Scholar 

  2. Bautin, N.N.: On the number of limit cycles which appear with the variation of coeffcients from an equilibrium position of focus or center type, Mat. Sbornik 30, 181–196 (1952), Amer. Math. Soc. Transl. 100, 1–19 (1954)

    Google Scholar 

  3. Chavarriga J., Sabatini M.: A survey of isochronous centers. Qual. Theory Dyn. Syst. 1, 1–70 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cheb-Terrab E.S., Roche A.D.: An Abel ODE class generalizing known integrable classes. Eur. J. Appl. Math. 14, 217–229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cima A., Gasull A., Mañosa V., Mañosas F.: Algebraic properties of the Liapunov and period constants. Rocky Mountain J. Math. 27, 471–501 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dulac H.: Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre. Bull. Sci. Math. Sér . (2) 32, 230–252 (1908)

    Google Scholar 

  7. Gasull, A., Guillamon A., Mañosa V.: Centre and isochronicity conditions for systems with homogeneous nonlinearities. In: 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), pp. 105–116. Presses Univ. Perpignan, Perpignan (1995)

  8. Gasull A., Llibre J.: Limit cycles for a class of Abel equations. SIAM J. Math. Anal. 21, 1235–1244 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kamke, E.: Differentialgleichungen “losungsmethoden und losungen”, Col. Mathematik und ihre anwendungen, 18, Akademische Verlagsgesellschaft Becker und Erler Kom-Ges., Leipzig (1943)

  10. Kapteyn, W.: On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, pp. 1446–1457 (1911) (Dutch)

  11. Kapteyn W.: New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 20, 1354–1365 (1912) 21, 27–33 (Dutch)

    Google Scholar 

  12. Lloyd N.G.: Small amplitude lmit cycles of polynomial differential equations. Lect. Notes Math. 1032, 346–356 (1983)

    Article  MathSciNet  Google Scholar 

  13. Loud W.S.: Behavior of the period of solutions of certain plane autonomous systems near centres. Contrib. Differ. Equ. 3, 323–336 (1964)

    MathSciNet  Google Scholar 

  14. Pearson J.M., Lloyd N.G., Christopher C.J.: Algorithmic derivation of centre conditions. SIAM Rev. 38, 619–636 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sibirskii K.S.: On the number of limit cycles in the neighborhood of a singular point. Differ. Equ. 1, 36–40 (1965)

    Google Scholar 

  16. Zoladek H.: Quadratic systems with center and their perturbations. J. Differ. Equ. 109, 223–273 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zoladek H.: On a certain generalization of Bautin’s theorem. Nonlinearity 7, 273–279 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Llibre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llibre, J., Valls, C. Centers and Isochronous Centers for Two Classes of Generalized Seventh and Ninth Systems. J Dyn Diff Equat 22, 657–675 (2010). https://doi.org/10.1007/s10884-010-9175-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9175-0

Keywords

Navigation