Skip to main content
Log in

Localized Non-diffusive Asymptotic Patterns for Nonlinear Parabolic Equations with Gradient Absorption

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We study the large-time behaviour of the solutions u of the evolution equation involving nonlinear diffusion and gradient absorption

$$\partial_t u - \Delta_p u + \vert\nabla u\vert^q = 0$$

We consider the problem posed for \(x \in \mathbb R^N \) and t  >  0 with non-negative and compactly supported initial data. We take the exponent p  >  2 which corresponds to slow p-Laplacian diffusion, and the exponent q in the superlinear range 1  <  q  <  p  −  1. In this range the influence of the Hamilton–Jacobi term \( \vert\nabla u\vert^q\) is determinant, and gives rise to the phenomenon of localization. The large-time behaviour is described in terms of a suitable self-similar solution that solves a Hamilton–Jacobi equation. The shape of the corresponding spatial pattern is rather conical instead of bell-shaped or parabolic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreucci D., Tedeev A.F., Ughi M. (2004). The Cauchy problem for degenerate parabolic equations with source and damping. Ukrainian Math. Bull. 1:1–23

    MathSciNet  Google Scholar 

  2. Antontsev, S. N. (1996). Quasilinear Parabolic Equations with Non-isotropic Nonlinearities: Space and Time Localization. Energy Methods in Continuum Mechanics (Oviedo, 1994), pp. 1–12, Kluwer Acad. Publ., Dordrecht.

  3. Antontsev, S. N., and Diaz, J. I. (1989). On Space or Time Localization of Solutions of Nonlinear Elliptic or Parabolic Equations via Energy Methods. Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), pp. 3–14, Pitman Res. Notes Math. Ser., Vol. 208, Longman Sci. Tech., Harlow.

  4. Aronson, D. G. (1986). The porous medium equation. Nonlinear diffusion problems (Montecatini Terme, 1985), pp. 1–46, Lecture Notes in Math., Vol. 1224, Springer, Berlin, 1986.

  5. Aronson D.G., Caffarelli L.A. (1983). The initial trace of a solution of the porous medium equation. Trans. Amer. Math. Soc. 280:351–366

    Article  MATH  MathSciNet  Google Scholar 

  6. Bardi, M., and Capuzzo-Dolcetta, I. (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Systems Control Found. Appl., Birkhäuser, Boston.

  7. Barles G. (1985). Asymptotic behavior of viscosity solutions of first order Hamilton–Jacobi equations. Ricerche Mat. 34:227–260

    MATH  MathSciNet  Google Scholar 

  8. Barles, G. (1994). Solutions de Viscosité des Equations d’Hamilton–Jacobi. Mathématiques & Applications, Vol. 17. Springer-Verlag, Berlin.

  9. Barles G., Perthame B. (1988). Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26:1133–1148

    Article  MATH  MathSciNet  Google Scholar 

  10. Bartier, J.-P., and Laurençot, P. Gradient estimates for a degenerate parabolic equation with gradient absorption and applications (Submitted).

  11. Benachour S., Karch G., Laurençot P. (2004). Asymptotic profiles of solutions to viscous Hamilton–Jacobi equations. J. Math. Pures Appl. 83:1275–1308

    MATH  MathSciNet  Google Scholar 

  12. Benachour S., Laurençot P., Schmitt D., Souplet P. (2002). Extinction and non-extinction for viscous Hamilton–Jacobi equations in \(\mathbb R^N\) . Asymptot. Anal. 31:229–246

    MATH  MathSciNet  Google Scholar 

  13. Benachour, S., Roynette, B., and Vallois, P. (1996). Solutions fondamentales de \(u_t - \frac{1}{2}\,u_{xx} = \pm \vert u_x\vert\) . Astérisque 236:41–71

    MathSciNet  Google Scholar 

  14. Benachour, S., Roynette, B., and Vallois, P. (1997). Asymptotic estimates of solutions of \(u_t - \frac{1}{2}\,\Delta u = -\vert\nabla u\vert\) in \(\mathbb R_+ \times \mathbb R^d\) , d≥ 2. J. Funct. Anal. 144:301–324

    Article  MATH  MathSciNet  Google Scholar 

  15. Bertsch M., Nanbu T., Peletier L.A. (1982). Decay of solutions of a degenerate nonlinear diffusion equation. Nonlinear Anal. 6:539–554

    Article  MATH  MathSciNet  Google Scholar 

  16. Bertsch M., Kersner R., Peletier L.A. (1982). Sur le comportement de la frontière libre dans une équation en théorie de la filtration. C. R. Acad. Sci. Paris Sér. I 295:63–66

    MATH  MathSciNet  Google Scholar 

  17. Biler P., Guedda M., Karch G. (2004). Asymptotic properties of solutions of the viscous Hamilton-Jacobi equation. J. Evol. Equat. 4:75–97

    Article  MATH  MathSciNet  Google Scholar 

  18. Chaves M., Vázquez J.L. (1996). Nonuniqueness in nonlinear heat propagation: a heat wave coming from infinity. Diff. Integral Equat. 9:447–464

    MATH  Google Scholar 

  19. Chaves M., Vázquez J.L. (1999). Free boundary layer formation in nonlinear heat propagation. Comm. Partial Diff. Equat. 24:1945–1965

    Article  MATH  Google Scholar 

  20. Crandall M.G., Ishii H., Lions P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27:1–67

    Article  MATH  MathSciNet  Google Scholar 

  21. Diaz J.I., Véron L. (1985) Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. Trans. Amer. Math. Soc. 290:787–814

    Article  MATH  MathSciNet  Google Scholar 

  22. Gallay T., Laurençot, P. (2007). Asymptotic behavior for a viscous Hamilton–Jacobi equation with critical exponent. Indiana Univ. Math. J. 56:459–479

    Article  MathSciNet  Google Scholar 

  23. Gilding B.H. (2005). The Cauchy problem for \(u_t = \Delta u + \vert \nabla u\vert^q\) , large-time behaviour. J. Math. Pures Appl. 84:753–785

    MATH  MathSciNet  Google Scholar 

  24. Húska, J., Poláčik, P., and Safonov, M. V. (2007). Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations (Preprint).

  25. Gmira A., Bettioui B. (2002). On the selfsimilar solutions of a diffusion convection equation. NoDEA Nonlinear Diff. Equat. Appl. 9:277–294

    Article  MATH  MathSciNet  Google Scholar 

  26. Ishii H. (1987). A simple, direct proof of uniqueness for solutions of the Hamilton–Jacobi equations of eikonal type. Proc. Amer. Math. Soc. 100:247–251

    Article  MATH  MathSciNet  Google Scholar 

  27. Kalashnikov A.S. (1987). Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russ. Math. Surv. 42:169–222

    Article  MATH  MathSciNet  Google Scholar 

  28. Kamin S., Vázquez J.L. (1988). Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoamericana 4:339–354

    MATH  MathSciNet  Google Scholar 

  29. Knerr B.F. (1977). The porous medium equation in one dimension. Trans. Amer. Math. Soc. 234:381–415

    Article  MATH  MathSciNet  Google Scholar 

  30. Ladyzhenskaya, O. A., Solonnikov, V. A., and Uraltseva, N. N. (1968). Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, R.I.

  31. Namah G., Roquejoffre J.-M. (1999). Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations. Comm. Partial Diff. Equat. 24:883–893

    Article  MATH  MathSciNet  Google Scholar 

  32. Roquejoffre J.-M. (2001). Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations. J. Math. Pures Appl. 80:85–104

    Article  MATH  MathSciNet  Google Scholar 

  33. Shi P.-H. (2004). Self-similar singular solution of a p-Laplacian evolution equation with gradient absorption term. J. Partial Diff. Equat. 17:369–383

    MATH  Google Scholar 

  34. Vázquez, J. L. (1993). Singular Solutions and Asymptotic Behaviour of Nonlinear Parabolic Equations. International Conference on Differential Equations, Vol. 1, 2 (Barcelona, 1991), pp. 234–249, World Sci. Publ., River Edge, NJ.

  35. Vázquez, J. L. (2006). Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Ser. Math. Appl., Vol. 33, Oxford University Press, Oxford.

  36. Vázquez, J. L. (2007). The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford.

  37. Yuan H.-J. (1996). Localization condition for a nonlinear diffusion equation. Chinese J. Contemp. Math. 17:45–58

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Laurençot.

Additional information

Dedicated to Pavol Brunovský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurençot, P., Vázquez, J.L. Localized Non-diffusive Asymptotic Patterns for Nonlinear Parabolic Equations with Gradient Absorption. J Dyn Diff Equat 19, 985–1005 (2007). https://doi.org/10.1007/s10884-007-9093-y

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-007-9093-y

Keywords

AMS Subject Classification

Navigation