Skip to main content
Log in

Oscillating Solutions and Large ω-limit Sets in a Degenerate Parabolic Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The paper deals with positive solutions of the initial-boundary value problem for \(u_t=f(u) (\Delta u+\lambda_1 u) \qquad (*)\) with zero Dirichlet data in a smoothly bounded domain \(\Omega \subset \mathbb{R}^{n}, n\ge 1\). Here \(f \in C^{0}([0,\infty)) \cap C^{1}((0,\infty))\) is positive on (0,∞) with f(0) = 0, and λ1 is exactly the first Dirichlet eigenvalue of −Δ in Ω. In this setting, (*) may possess oscillating solutions in presence of a sufficiently strong degeneracy. More precisely, writing \(H(s):=\int_{1}^{s} \frac{d\sigma}{f(\sigma)}\), it is shown that if \(\int_{0} sH(s)ds=-\infty\) then there exist global classical solutions of (*) satisfying \(\limsup_{t\to\infty} \|u(\cdot,t)\|_{L^\infty(\Omega)}=\infty\) and \(\liminf_{t\to\infty} \|u(\cdot,t)\|_{L^\infty(\Omega)}=0\). Under the additional structural assumption \(\frac{sf'(s)}{f(s)}\ge\kappa > 0\), s > 0, this result can be sharpened: If \(\int_0 sH(s)ds=-\infty\) then (*) has a global solution with its ω-limit set being the ordered arc that consists of all nonnegative multiples of the principal Laplacian eigenfunction. On the other hand, under the above additional assumption the opposite condition \(\int_0 sH(s)ds > -\infty\) ensures that all solutions of (*) will stabilize to a single equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen L.J.S. (1983). Persistence and extinction in single species reaction-diffusion models. Bull. Math. Biol. 45, 209–227

    MATH  MathSciNet  Google Scholar 

  2. Angenent S. (1991). On the formation of singularities in the curve shortening flow. J. Differ. Geom. 33(3): 601–633

    MATH  MathSciNet  Google Scholar 

  3. Aronson D.G.(1986). The porous medium equation. Nonlinear diffusion problems, Lect. 2nd 1985 Sess. C.I.M.E.. Montecatini Terme/Italy 1985, Lect. Notes Math. 1224, 1–46

  4. Bertsch M., Dal Passo R., Ughi M. (1990). Discontinuous “viscosity” solutions of a degenerate parabolic equation. Trans. AMS 320(2): 779–798

    Article  MATH  MathSciNet  Google Scholar 

  5. Crandall M.G., Rabinowitz P.H., Tartar L. (1977). On a Dirichlet problem with a singular nonlinearity. Comm. Part. Differ. Equations 2, 193–222

    Article  MATH  MathSciNet  Google Scholar 

  6. Djie K.C.(2006). On the nonintegrability of expressions involving the distance to a nonsmooth boundary. Preprint, www.math1.rwth-aachen.de/Forschung-Research/ d_emath1.php

  7. Friedman A., McLeod B. (1987). Blow-up of solutions of nonlinear degenerate parabolic equations. Arch. Rat. Mech. Anal. 96, 55–80

    MathSciNet  Google Scholar 

  8. Gilbarg D., Trudinger N.S. (1977). Elliptic Partial Differential Equations of Second Order. Springer, Berlin/Heidelberg/New York.

    MATH  Google Scholar 

  9. Hamilton R.S. (1988). The Ricci flow on surfaces. Contemp. Math. 71, 237–262

    MathSciNet  Google Scholar 

  10. Haraux A., Poláčik P. (1992). Convergence to positive equilibrium for some nonlinear evolution equations in a ball. Acta Math. Univ. Comenianae LXI, 129–141

    Google Scholar 

  11. Jendoubi M.A. (1998). A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153, 187–202

    Article  MATH  MathSciNet  Google Scholar 

  12. Ladyzenskaja O.A., Solonnikov V.A., Ural’ceva N.N. (1968). Linear and Quasi- linear Equations of Parabolic Type. AMS, Providence

    Google Scholar 

  13. Lions P.L. (1984). Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations. J. Differ. Eq. 53, 362–386

    Article  MATH  Google Scholar 

  14. Low B.C. (1973). Resistive diffusion of force-free magnetic fields in a passive medium. Astrophys. J. 181, 209–226

    Article  Google Scholar 

  15. Luckhaus S., Dal Passo R. (1987). A degenerate diffusion problem not in divergence form. J. Differ. Eq. 69, 1–14

    Article  MATH  MathSciNet  Google Scholar 

  16. Matano H. (1978). Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ. 18, 221–227

    MATH  MathSciNet  Google Scholar 

  17. Poláčik P. (2002). Some common asymptotic properties of semilinear parabolic, hyperbolic and elliptic equations. Math. Bohem. 127(2): 301–310

    MathSciNet  Google Scholar 

  18. Poláčik P., Rybakowski K.P. (1996). Nonconvergent bounded trajectories in semilinear heat equations. J. Differ. Eq. 124, 472–494

    Article  Google Scholar 

  19. Poláčik P., Simondon F. (2002). Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains. J. Differ. Eq. 186, 586–610

    Article  Google Scholar 

  20. Poláčik P., Yanagida E. (2003). On bounded and unbounded global solutions of a supercritical semilinear heat equation. Math. Annal. 327, 745–771

    Article  Google Scholar 

  21. Wiegner M. (1997). A Degenerate Diffusion Equation with a Nonlinear Source Term. Nonlin. Anal. TMA 28, 1977–1995

    Article  MATH  MathSciNet  Google Scholar 

  22. Winkler M. (2001). Large time behavior of degenerate parabolic equations with absorption. Nonlinear Differ. Eq. Appl. 8(3): 343-361

    Article  MATH  MathSciNet  Google Scholar 

  23. Winkler M. (2003). Boundary behaviour in strongly degenerate parabolic equations. Acta Math. Univ. Comenianae 72(1): 129–139

    MATH  MathSciNet  Google Scholar 

  24. Winkler M. (2004). A doubly critical degenerate parabolic problem. Math. Meth. Appl. Sci. 27(14): 1619–1627

    Article  MATH  MathSciNet  Google Scholar 

  25. Winkler M. (2004). Propagation vs. constancy of support in the degenerate parabolic equation u t  = f(u) Δu. Rend. Univ. Di Trieste 36, 1–15

    MATH  MathSciNet  Google Scholar 

  26. Winkler M. (2005). Large time behavior and stability of equilibria of degenerate parabolic equations. J. Dyn. Differ. Eq. 17(2): 331–351

    Article  MATH  MathSciNet  Google Scholar 

  27. Winkler M. Nontrivial ordered ω-limit sets in a linear degenerate parabolic equation. To appear in: Discr. Cont. Dyn. Syst.

  28. Zelenyak T.I. (1968). Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differ. Eq. (transl. from Differencialnye Uravnenia) 4, 17–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, M. Oscillating Solutions and Large ω-limit Sets in a Degenerate Parabolic Equation. J Dyn Diff Equat 20, 87–113 (2008). https://doi.org/10.1007/s10884-006-9061-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-006-9061-y

Keywords

Ams Subject Classification (2000)

Navigation