Skip to main content
Log in

On the Geometry of Rolling and Interpolation Curves on S n, SO n , and Grassmann Manifolds

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We present a procedure to generate smooth interpolating curves on submanifolds, which are given in closed form in terms of the coordinates of the embedding space. In contrast to other existing methods, this approach makes the corresponding algorithm easy to implement. The idea is to project the prescribed data on the manifold onto the affine tangent space at a particular point, solve the interpolation problem on this affine subspace, and then project the resulting curve back on the manifold. One of the novelties of this approach is the use of rolling mappings. The manifold is required to roll on the affine subspace like a rigid body, so that the motion is described by the action of the Euclidean group on the embedding space. The interpolation problem requires a combination of a pullback/push forward with rolling and unrolling. The rolling procedure by itself highlights interesting properties and gives rise to a new, but simple, concept of geometric polynomial curves on manifolds. This paper is an extension of our previous work, where mainly the 2-sphere case was studied in detail. The present paper includes results for the n-sphere, orthogonal group SO n , and real Grassmann manifolds. In particular, we present the kinematic equations for rolling these manifolds along curves without slip or twist, and derive from them formulas for the parallel transport of vectors along curves on the manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint. Springer-Verlag, Berlin (2004).

    MATH  Google Scholar 

  2. A. M. Bloch, Nonholonomic mechanics and control. Springer-Verlag, New York (2003).

    MATH  Google Scholar 

  3. M. Camarinha, The geometry of cubic polynomials on Riemannian manifolds. Ph.D. thesis, University of Coimbra, Portugal (1996).

  4. M. Camarinha, F. Silva Leite, and P. Crouch, Splines of class \(\mathcal{C}^{k}\) on non-Eulidean spaces. J. Math. Control Inform. 12 (1995), 399–410.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Crouch, G. Kun, and F. Silva Leite, The De Casteljau algorithm on Lie groups and spheres. J. Dynam. Control Systems 5 (1999), No. 3, 397–429.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Crouch and F. Silva Leite, Geometry and the dynamic interpolation problem. In: Proc. American Control Conference, Boston (1991), pp. 1131–1136.

  7. P. Crouch and F. Silva Leite, The dynamic interpolation problem on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dynam. Control Systems 1 (1995), No. 2, 177–202.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. De Casteljau, Outillages méthodes calcul. Technical report, A. Citroen, Paris (1959).

  9. G. Farin, Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann, San Francisco (2002).

    Google Scholar 

  10. R. Giambó, F. Giannoni, and P. Piccione, An analytical theory for Riemannian cubic polynomials. IMA J. Math. Control Inform. 19 (2002), 445–460.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Gilmore, Lie groups, Lie algebras, and some of their applications. Wiley, New York (1974).

    MATH  Google Scholar 

  12. U. Helmke, K. Hüper, and J. Trumpf, Newton’s method on Grassmann manifolds. (in press).

  13. U. Helmke and J. B. Moore, Optimization and dynamical systems. CCES, Springer-Verlag, London (1994).

    Google Scholar 

  14. K. Hüper, M. Kleinsteuber, and F. Silva Leite, Rolling Stiefel manifolds. Int. J. Systems Sci. (to appear).

  15. K. Hüper and F. Silva Leite, Smooth interpolating curves with applications to path planning. In: 10th IEEE Mediterranean Conference on Control and Automation, Instituto Superior Técnico, Lisboa, Portugal, July, 9–12, 2002 (on CDROM).

  16. K. Hüper and F. Silva Leite, On the geometry of rolling and interpolation curves on S n, SO n , and Grassmann manifolds. Technical Report SISSA 56/2005/M, Int. School for Adv. Stud., Trieste, Italy (2005).

  17. P. E. Jupp and J. T. Kent, Fitting smooth paths to spherical data. Appl. Statist. 36 (1987), No. 1, 34–46.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Jurdjevic, Geometric control theory. Cambridge Univ. Press, Cambridge (1997).

    MATH  Google Scholar 

  19. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I. Wiley, New York (1996).

    Google Scholar 

  20. J. M. Lee, Riemannian manifolds: An introduction to curvature. Springer-Verlag, New York (1997).

    MATH  Google Scholar 

  21. J. W. Milnor, Morse theory. Based on lecture notes by M. Spivak and R. Wells. Ann. Math. Stud. 51, Princeton Univ. Press, Princeton, New Jersey (1963).

    MATH  Google Scholar 

  22. L. Noakes, G. Heinzinger, and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989), 465–473.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. C. Park and B. Ravani, Bézier curves on Riemannian manifolds and Lie groups with kinematics applications. ASME J. Mech. Design 117 (1995), 36–40.

    Google Scholar 

  24. R. W. Sharpe, Differential geometry. Springer-Verlag, New York (1996).

    Google Scholar 

  25. Y. Shen and K. Hüper, Optimal joint trajectory planning for manipulator robot performing constrained motion tasks. In: Australasian Conf. on Robotics and Automation, Canberra, December 2004 (on CDROM).

  26. Y. Shen and K. Hüper, Optimal joint trajectory planning of manipulators subject to motion constraints. In: Int. Conf. on Advanced Robotics (ICAR 2005), Seattle, July 2005 (on CDROM).

  27. Y. Shen, K. Hüper, and F. Silva Leite, Smooth interpolation of orientation by rolling and wrapping for robot motion planning. In: IEEE Int. Conf. on Robotics and Automation (ICRA 2006), Orlando, Florida, USA (2006), pp. 113–118.

  28. S. T. Smith, Geometric optimization methods for adaptive filtering. Ph.D. thesis, Harvard University, Cambridge (1993).

  29. S. T. Smith, Optimization techniques on Riemannian manifolds. In: Hamiltonian and gradient flows, algorithms and control (A. Bloch, ed.), Fields Inst. Commun. Amer. Math. Soc., Providence (1994), pp. 113–136.

    Google Scholar 

  30. J. A. Zimmerman, Optimal control of the sphere S n rolling on E n. Math. Control Signals Systems 17 (2005), 14–37.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hüper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüper, K., Silva Leite, F. On the Geometry of Rolling and Interpolation Curves on S n, SO n , and Grassmann Manifolds. J Dyn Control Syst 13, 467–502 (2007). https://doi.org/10.1007/s10883-007-9027-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-007-9027-3

Key words and phrases

2000 Mathematics Subject Classification

Navigation