Skip to main content
Log in

Minimum diameter cost-constrained Steiner trees

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given an edge-weighted undirected graph \(G=(V,E,c,w)\) where each edge \(e\in E\) has a cost \(c(e)\ge 0\) and another weight \(w(e)\ge 0\), a set \(S\subseteq V\) of terminals and a given constant \(\mathrm{C}_0\ge 0\), the aim is to find a minimum diameter Steiner tree whose all terminals appear as leaves and the cost of tree is bounded by \(\mathrm{C}_0\). The diameter of a tree refers to the maximum weight of the path connecting two different leaves in the tree. This problem is called the minimum diameter cost-constrained Steiner tree problem, which is NP-hard even when the topology of the Steiner tree is fixed. In this paper, we deal with the fixed-topology restricted version. We prove the restricted version to be polynomially solvable when the topology is not part of the input and propose a weakly fully polynomial time approximation scheme (weakly FPTAS) when the topology is part of the input, which can find a \((1+\epsilon )\)–approximation of the restricted version problem for any \(\epsilon >0\) with a specific characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bondy JA, Murty USR (1976) Graph theory with application. Macmillan, London

    Google Scholar 

  • Chan TM (2002) Semi-online maintenance of geometric optima and measures. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), 474–483.

  • Chen YH (2011) An improved approximation algorithm for the terminal Steiner tree problem. B. Murgante et al. (eds): ICCSA 2011. Part III, LNCS 6784, 141–151

  • Deo N, Abdalla A (2000) Computing a diameter-constrained minimum spanning tree in parallel. In: Algorithms and complexity. LNCS. 1767, 17–31

  • Ding W (2010) Many-to-many multicast routing under a fixed topology: basic architecture, problems and algorithms. In: First international conference on networking and distributed computing (ICNDC’ 2010), pp. 128–132.

  • Ding W, Lin G, Xue G (2011) Diameter-constrained Steiner trees. Discret Math Algorithms Appl 3(4):491–502

    Article  MATH  MathSciNet  Google Scholar 

  • Ding W, Qiu K (2013) Algorithms for the minimum diameter terminal Steiner tree problem. J Combin Optim. doi:10.1007/s10878-012-9591-7

  • Ding W, Xue G (2011) A linear time algorithm for computing a most reliable source on a tree network with faulty nodes. Theor Comput Sci 412:225–232

    Article  MATH  MathSciNet  Google Scholar 

  • Drake DE, Hougrady S (2004) On approximation algorithms for the terminal Steiner tree problem. Inf Process Lett 89:15–18

    Article  MATH  Google Scholar 

  • Du D, Hu X (2008) Steiner tree problems in computer communication networks. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  MATH  Google Scholar 

  • Fuchs B (2003) A note on the terminal Steiner tree problem. Inf Process Lett 87:219–220

    Article  MATH  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco, CA

    MATH  Google Scholar 

  • Gouveia L, Magnanti TL (2003) Network flow models for designing diameter-constrained minimum spanning and Steiner trees. Networks 41:159–173

    Article  MATH  MathSciNet  Google Scholar 

  • Gudmundsson J, Haverkort H, Park SM, Shin CS, Wolff A (2002) Approximating the geometric minimum-diameter spanning tree. In: Proc. 18th European Workshop on Computational Geometry (EWCG 2002), 41–45.

  • Hassin R (1992) Approximation schemes for the restricted shortest path problem. Math Oper Res 17:36–42

    Article  MATH  MathSciNet  Google Scholar 

  • Hassin R, Tamir A (1995) On the minimum diameter spanning tree problem. Inf Process Lett 53:109–111

    Article  MATH  MathSciNet  Google Scholar 

  • Ho JM, Lee DT, Chang CH, Wong CK (1991) Minimum diameter spanning trees and related problems. SIAM J Comput 20:987–997

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem. Annals of Disc. Math. 53. North-Holland, Amsterdam

    Google Scholar 

  • Ibarra O, Kim C (1975) Fast approximation algorithms for the knapsack and sum of subset problems. JACM 22(4):463–468

    Article  MATH  MathSciNet  Google Scholar 

  • Lin G, Xue G (2002) On the terminal Steiner problem. Inf Process Lett 84:103–107

    Article  MATH  MathSciNet  Google Scholar 

  • Martineza FV, Pinab JCD, Soares J (2007) Algorithm for terminal Steiner trees. Theor Comput Sci 389:133–142

    Article  Google Scholar 

  • Marathe MV, Ravi R, Sundaram R, Ravi SS, Rosenkrantz DJ, Hunt III HB (1998) Bicriteria network design problems. J Algorithms 28(1):142–171

    Article  MATH  MathSciNet  Google Scholar 

  • Robins G, Zelikovsky A (2000) Improved Steiner tree approximation in graphs. In: Proc. of the 11th Annual ACM-SIAM Symposium on discrete algorithm (SODA 2000), 770–779.

  • Dos Santos AC, Lucena A, Ribeiro CC (2004) Solving diameter constrained minimum spanning tree problems in dense graphs. In: Experimental and efficient algorithms. LNCS. 3059, 458–467

  • Sahni S (1977) General techniques for combinatorial approximations. Oper Res 35:70–79

    MathSciNet  Google Scholar 

  • Spriggs MJ, Keil JM, Bespamyatnikh S, Segal M, Snoeyink J (2004) Computing a \((1+\epsilon )\)-approximate geometric minimum-diameter spanning tree. Algorithmica 38(4):577–589

    Article  MATH  MathSciNet  Google Scholar 

  • Tamir A (1996) An \(O(pn^2)\) algorithm for the \(p\)-median and related problems on tree graphs. Oper Res Lett 19:59–64

    Article  MATH  MathSciNet  Google Scholar 

  • Vazirani VV (2001) Approximation algorithms. Springer, Berlin

    Google Scholar 

  • Wang L, Jia X (1999) Note fixed topology Steiner trees and spanning forests. Theor Comput Sci 215 (1–2):359–370

    Google Scholar 

  • Xue G, Xiao W (2004) A polynomial time approximation scheme for minimum cost delay-constrained multicast tree under a Steiner topology. Algorithmica 41(1):53–72

    Article  MathSciNet  Google Scholar 

  • Xue G, Zhang W, Tang J, Thulasiraman K (2008) Polynomial time approximation algorithms for multi-constrained QoS routing. IEEE/ACM Trans Netw 16:656–669

    Article  Google Scholar 

  • Zelikovsky A (1993) An \(\frac{11}{6}\)-approximation algorithm for the network Steiner problem. Algorithmica 9(5):463–470

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, W., Xue, G. Minimum diameter cost-constrained Steiner trees. J Comb Optim 27, 32–48 (2014). https://doi.org/10.1007/s10878-013-9611-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-013-9611-2

Keywords

Navigation