Skip to main content
Log in

Multi-model generalised predictive control for intravenous anaesthesia under inter-individual variability

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Inter-individual variability possesses a major challenge in the regulation of hypnosis in anesthesia. Understanding the variability towards anesthesia effect is expected to assist the design of controller for anesthesia regulation. However, such studies are still very scarce in the literature. This study aims to analyze the inter-individual variability in propofol pharmacokinetics/pharmacodynamics (PK/PD) model and proposed a suitable controller to tackle the variability. This study employed Sobol’ sensitivity analysis to identify significance parameters in propofol PK/PD model that affects the model output Bispectral Index (BIS). Parameters’ range is obtained from reported clinical data. Based on the finding, a multi-model generalized predictive controller was proposed to regulate propofol in tackling patient variability. \(Ce_{50}\) (concentration that produces 50% of the maximum effect) was found to have a highly-determining role on the uncertainty of BIS. In addition, the Hill coefficient, \(\gamma\), was found to be significant when there is a drastic input, especially during the induction phase. Both of these parameters only affect the process gain upon model linearization. Therefore, a predictive controller based on switching of model with different process gain is proposed. Simulation result shows that it is able to give a satisfactory performance across a wide population. Both the parameters \(Ce_{50}\) and \(\gamma\), which are unknown before anesthesia procedure, were found to be highly significant in contributing the uncertainty of BIS. Their range of variability must be considered during the design and evaluation of controller. A linear controller may be sufficient to tackle most of the variability since both \(Ce_{50}\) and \(\gamma\) would be translated into process gain upon linearization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shafer S, Flood S, Schwinn DA. Basic principles of pharmacology. In: Miller RD, Eriksson L, Fleisher L, Kronish JW, Young WL, editors. Miller’s anesthesia, Chap 19. 7th ed. Philadelphia: Elsevier; 2010. p. 479.

    Chapter  Google Scholar 

  2. Patel B, Patel H, Vachhrajani P, Shah D, Sarvaia A. Adaptive smith predictor controller for total intravenous anesthesia automation. Biomed Eng Lett. 2019;9:127–44.

    Article  Google Scholar 

  3. Navarro-Guerrero G, Tang Y. Fractional-order closed-loop model reference adaptive control for anesthesia. Algorithms. 2018;11(7):106.

    Article  Google Scholar 

  4. Naşcu I, Oberdieck R, Pistikopoulos EN. Explicit hybrid model predictive control strategies for intravenous anaesthesia. Comput Chem Eng. 2017;106:814–25. https://doi.org/10.1016/j.compchemeng.2017.01.033.

    Article  CAS  Google Scholar 

  5. Krieger A, Pistikopoulos EN. Model predictive control of anesthesia under uncertainty. Comput Chem Eng. 2014;71:699–707. https://doi.org/10.1016/j.compchemeng.2014.07.025.

    Article  CAS  Google Scholar 

  6. Soltesz K, Hahn JO, Hägglund T, Dumont GA, Ansermino JM. Individualized closed-loop control of propofol anesthesia: a preliminary study. Biomed Signal Process Control. 2013;8(6):500–8. https://doi.org/10.1016/j.bspc.2013.04.005.

    Article  Google Scholar 

  7. Sawaguchi Y, Furutani E, Shirakami G, Araki M, Fukuda K. A model-predictive hypnosis control system under total intravenous anesthesia. IEEE Trans Biomed Eng. 2008;55(3):874–87.

    Article  Google Scholar 

  8. Sartori V, Schumacher PM, Bouillon T, Luginbuehl M, Morari M. On-line estimation of propofol pharmacodynamic parameters. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp. 74–77 (2005)

  9. Silva MM, Wigren T, Mendonça T. A reduced mimo wiener model for recursive identification of the depth of anesthesia. Int J Adapt Control Signal Process. 2014;28(12):1357–71. https://doi.org/10.1002/acs.2447.

    Article  Google Scholar 

  10. Ting CH, Arnott RH, Linkens DA, Angel A, Mahfouf M. Generalised predictive control of evoked potentials for general anaesthesia. IEE Proc. 2002;149(6):481–93.

    Google Scholar 

  11. Westover MB, Kim SE, Ching S, Purdon PL, Brown EN. Robust control of burst suppression for medical coma. J Neural Eng. 2015;12(4):046004.

    Article  Google Scholar 

  12. Hahn J, Dumont GA, Ansermino JM. A direct dynamic dose-response model of propofol for individualized anesthesia care. IEEE Trans Biomed Eng. 2012;59(2):571–8.

    Article  Google Scholar 

  13. Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res. 1999;16:176–85.

    Article  CAS  Google Scholar 

  14. Saltelli A, Tarantola S, Campolongo F, Ratto M. Front matter. New York: Wiley; 2004.

    Google Scholar 

  15. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun. 2010;181:259–70.

    Article  CAS  Google Scholar 

  16. Homma T, Saltelli A. Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf. 1996;52(1):1–17. https://doi.org/10.1016/0951-8320(96)00002-6.

    Article  Google Scholar 

  17. Martín-Mateos I, Méndez Pérez JA, Reboso JA, León A. Modelling propofol pharmacodynamics using bis-guided anaesthesia. Anaesthesia. 2013;68(11):1132–40. https://doi.org/10.1111/anae.12384.

    Article  CAS  PubMed  Google Scholar 

  18. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88(5):1170–82.

    Article  CAS  Google Scholar 

  19. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90(6):1502–16.

    Article  CAS  Google Scholar 

  20. Eleveld DJ, Proost JH, Cortinez LI, Absalom AR, Struys M. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118:1221–37.

    Article  CAS  Google Scholar 

  21. Krieger A, Panoskaltsis N, Mantalaris A, Georgiadis MC, Pistikopoulos EN. Modeling and analysis of individualized pharmacokinetics and pharmacodynamics for volatile anesthesia. IEEE Trans Biomed Eng. 2014;61(1):25–34.

    Article  Google Scholar 

  22. Kwok KE, Shah SL, Clanachan AS, Finegan BA. Evaluation of a long-range adaptive predictive controller for computerized drug delivery systems. IEEE Trans Biomed Eng. 1995;42(1):79–86.

    Article  CAS  Google Scholar 

  23. Mahfouf M, Linkens DA, Asbury AJ, Gray WM, Peacock JE. Generalised predictive control (gpc) in the operating theatre. IEE Proc D. 1992;139(4):404–20.

    Article  Google Scholar 

  24. Pawlowski A, Merigo L, Guzman JL, Visioli A, Dormido S. Event-based GPC for depth of hypnosis in anesthesia for efficient use of propofol. In: 2017 3rd international conference on event-based control, communication and signal processing (EBCCSP), pp. 1–7 (2017)

  25. Clarke D, Mohtadi C, Tuffs P. Generalized predictive control—part I the basic algorithm. Automatica. 1987;23(2):137–48. https://doi.org/10.1016/0005-1098(87)90087-2.

    Article  Google Scholar 

  26. Rossiter J. Model-based predictive control: a practical approach. Boca Raton: CRC Press; 2003.

    Google Scholar 

  27. Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20:147–69.

    Article  CAS  Google Scholar 

  28. Struys MMRF, Smet TD, Greenwald S, Absalom AR, Bingé S, Mortier EP. Performance evaluation of two published closed-loop control systems using bispectral index monitoring a simulation study. Anesthesiology. 2004;100(3):640–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Syafiie.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, C.J., Syafiie, S. Multi-model generalised predictive control for intravenous anaesthesia under inter-individual variability. J Clin Monit Comput 35, 1037–1045 (2021). https://doi.org/10.1007/s10877-020-00581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-020-00581-0

Keywords

Navigation