Skip to main content
Log in

K-band Doppler radar for contact-less overnight sleep marker assessment: a pilot validation study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

An estimated 45 million persons in Europe are annually subjected to sleep-wake disorders. State-of-the-art polysomnography provides sophisticated insights into sleep (patho)physiology. A drawback of the method, however, is the obtrusive setting dependent on a clinical-based sleep laboratory with high operational costs. A contact-less prototype was developed to monitor limb movements and vital signs during sleep. A dual channel K-band Doppler radar transceiver captured limb movements and periodic chest wall motion due to respiration and heart activity. A wavelet transform based multi-resolution analysis (MRA) approach isolated limb movements, respiration, and heart rate from the demodulated signal. A test bench setup characterized the prototype simulating near physiological chest wall motions caused by periodic respiration and heartbeats in humans. Single- and multi-tone test bench simulations showed extremely low relative percentage errors of the prototype for respiratory and heart rate within −2 and 1%. The performance of the prototype was validated in overnight comparative studies, involving two healthy volunteers, with polysomnography as the reference. The prototype has successfully classified limb movements, with a sensitivity and specificity of 88.9 and 76.8% respectively, and has achieved accurate respiratory and heart rate measurement performance with overall absolute errors of 1 breath per minute for respiration and 3 beats per minute for heart rate. This pilot study shows that K-band Doppler radar and wavelet transform MRA seem to be valid for overnight sleep marker assessment. The contact-less approach might offer a promising solution for home-based sleep monitoring and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, Gannon B, Jones DH, Jennum P, Jordanova A, Jonsson L, Karampampa K, Knapp M, Kobelt G, Kurth T, Lieb R, Linde M, Ljungcrantz C, Maercker A, Melin B, Moscarelli M, Musayev A, Norwood F, Preisig M, Pugliatti M, Rehm J, Salvador-Carulla L, Schlehofer B, Simon R, Steinhausen HC, Stovner LJ, Vallat JM, Van den Bergh P, van Os J, Vos P, Xu W, Wittchen HU, Jonsson B, Olesen J, Group CD. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21(10):718–79. doi:10.1016/j.euroneuro.2011.08.008.

    Article  CAS  PubMed  Google Scholar 

  2. Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002;6(2):97–111.

    Article  PubMed  Google Scholar 

  3. Riemann D. Primary insomnia: a risk factor to develop depression? J Affect Disord. 2003;76(1–3):255–9. doi:10.1016/s0165-0327(02)00072-1.

    Article  PubMed  Google Scholar 

  4. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14. doi:10.1093/aje/kws342.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McNicholas WT, Bonsignore MR. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2006;29:156–78.

    Article  Google Scholar 

  6. Lam EWK, Chung F, Wong J. Sleep-disordered breathing, postoperative delirium, and cognitive impairment. Anesth Analg. 2017;124(5):1626–35. doi:10.1213/ANE.0000000000001914.

    Article  PubMed  Google Scholar 

  7. Mathis J, Schreier D. Daytime sleepiness and driving behaviour (Tagesschlafrigkeit und Fahrverhalten.). Ther Umsch. 2014;71(11):679–86.

    Article  PubMed  Google Scholar 

  8. Ferrie JE, Kumari M, Salo P, Singh-Manoux A, Kivimäki M. Sleep epidemiology—a rapidly growing field. Int J Epidemiol. 2011;40(6):1431–7. doi:10.1093/ije/dyr203.

    Article  PubMed  Google Scholar 

  9. Flemons WW, Douglas NJ, Kuna ST, Rodenstein DO, Wheatley J. Access to diagnosis and treatment of patients with suspected sleep Apnea. Am J Respir Crit Care Med. 2004;169(6):668–72. doi:10.1164/rccm.200308-1124PP.

    Article  PubMed  Google Scholar 

  10. Benca RM. Diagnosis and treatment of chronic insomnia: a review. Psychiatr Serv. 2005;56(3):332–43. doi:10.1176/appi.ps.56.3.332.

    Article  PubMed  Google Scholar 

  11. Berry RB BR, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, Vaughn BV, The American Academy of Sleep Medicine. (2012) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, Version 2.3.

  12. Newell J, Mairesse O, Verbanck P, Neu D. Is a one-night stay in the lab really enough to conclude? First-night effect and night-to-night variability in polysomnographic recordings among different clinical population samples. Psychiatry Res. 2012;200(2–3):795–801. doi:10.1016/j.psychres.2012.07.045.

    Article  PubMed  Google Scholar 

  13. Meyer TJ, Eveloff SE, Kline LR, Millman RP. One negative polysomnogram does not exclude obstructive sleep apnea. Chest. 1993;103(3):756–60.

    Article  CAS  PubMed  Google Scholar 

  14. Levendowski DJ, Zack N, Rao S, Wong K, Gendreau M, Kranzler J, Zavora T, Westbrook PR. Assessment of the test–retest reliability of laboratory polysomnography. Sleep Breathing. 2009;13(2):163–7. doi:10.1007/s11325-008-0214-6.

    Article  PubMed  Google Scholar 

  15. Monk TH, Reynolds CF, Kupfer DJ, Buysse DJ, Coble PA, Hayes AJ, Machen MA, Petrie SR, Ritenour AM. The Pittsburgh sleep diary. J Sleep Res. 1994;3(2):111–20. doi:10.1111/j.1365-2869.1994.tb00114.x.

    Article  PubMed  Google Scholar 

  16. Frankel BL, Coursey RD, Buchbinder R, Snyder F. Recorded and reported sleep in chronic primary insomnia. Arch Gen Psychiatry. 1976;33(5):615–23. doi:10.1001/archpsyc.1976.01770050067011.

    Article  CAS  PubMed  Google Scholar 

  17. Harvey AG, Tang N. (Mis)Perception of sleep in insomnia: a puzzle and a resolution. Psychol Bull. 2012;138(1):77–101. doi:10.1037/a0025730.

    Article  PubMed  Google Scholar 

  18. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep. 1992;15(5):461–9.

    Article  CAS  PubMed  Google Scholar 

  19. Pollak CP, Tryon WW, Nagaraja H, Dzwonczyk R. How accurately does wrist actigraphy identify the states of sleep and wakefulness? Sleep. 2001;24(8):957–65.

    Article  CAS  PubMed  Google Scholar 

  20. Snyder F, Hobson JA, Morrison DF, Goldfrank F. Changes in respiration, heart rate, and systolic blood pressure in human sleep. J Appl Physiol. 1964;19:417–22.

    Article  CAS  PubMed  Google Scholar 

  21. Stradling JR, Chadwick GA, Frew AJ. Changes in ventilation and its components in normal subjects during sleep. Thorax. 1985;40(5):364–70. doi:10.1136/thx.40.5.364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pedro F, Xi L, Mustafa R, Reinder H, Ronald MA, Jérôme R. Sleep stage classification with ECG and respiratory effort. Physiol Meas. 2015;36(10):2027.

    Article  Google Scholar 

  23. De Chazal P, Sadr N Sleep apnoea classification using heart rate variability, ECG derived respiration and cardiopulmonary coupling parameters. In: 2016 38th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 16–20 Aug 2016. pp. 3203–3206. doi:10.1109/EMBC.2016.7591410.

  24. Yavari E, Boric-Lubecke O, Yamada S. Radar principles. In: Doppler radar physiological sensing. Hoboken: Wiley; 2016. pp. 21–38. doi:10.1002/9781119078418.ch2.

    Chapter  Google Scholar 

  25. Lin JC. Noninvasive microwave measurement of respiration. Proc IEEE. 1975;63(10):1530. doi:10.1109/PROC.1975.9992.

    Article  Google Scholar 

  26. Wang J, Wang X, Chen L, Huangfu J, Li C, Ran L. Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm. IEEE Trans Instrum Meas. 2014;63(1):145–53. doi:10.1109/TIM.2013.2277530.

    Article  Google Scholar 

  27. Park BK, Boric-Lubecke O, Lubecke VM. Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems. IEEE Trans Microw Theory Tech. 2007;55(5):1073–9. doi:10.1109/TMTT.2007.895653.

    Article  Google Scholar 

  28. Lin HD, Lee YS, Chuang BN. Using dual-antenna nanosecond pulse near-field sensing technology for non-contact and continuous blood pressure measurement. In: 2012 Annual International Conference of the IEEE engineering in Medicine and Biology Society, 28 Aug 2012–1 Sept 2012. pp. 219–22. doi:10.1109/EMBC.2012.6345909.

  29. Byung-Kwon P, Yamada S, Boric-Lubecke O, Lubecke V. Single-channel receiver limitations in Doppler radar measurements of periodic motion. In: 2006 IEEE Radio and Wireless Symposium, 17–19 Jan 2006. pp. 99–102. doi:10.1109/RWS.2006.1615104.

  30. Xu W, Gu C, Li C, Sarrafzadeh M. Robust Doppler radar demodulation via compressed sensing. Electron Lett. 2012;48(22):1428–30.

    Article  Google Scholar 

  31. Zakrzewski M, Raittinen H, Vanhala J. Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar. IEEE Sens J. 2012;12(3):627–34. doi:10.1109/JSEN.2011.2119299.

    Article  Google Scholar 

  32. Boric-Lubecke O, Lubecke V, Mostafanezhad I. Amplitude modulation issues in Doppler radar heart signal extraction. In: 2011 IEEE topical conference on biomedical wireless technologies, networks, and sensing systems. 2011. doi:10.1109/BIOWIRELESS.2011.5724357.

  33. Bentley PM, McDonnell JTE. Wavelet transforms: an introduction. Electron Commun Eng J. 1994;6(4):175–86. doi:10.1049/ecej:19940401.

    Article  Google Scholar 

  34. Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11(7):674–93. doi:10.1109/34.192463.

    Article  Google Scholar 

  35. Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–10. doi:10.1016/S0140-6736(86)90837-8.

    Article  Google Scholar 

  36. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60. doi:10.1177/096228029900800204.

    Article  CAS  PubMed  Google Scholar 

  37. Fox NA, Heneghan C, Gonzalez M, Shouldice RB, De Chazal P. An evaluation of a non-contact biomotion sensor with actimetry. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/IEMBS.2007.4352877.

  38. Shouldice RB, Heneghan C, Petres G, Zaffaroni A, Boyle P, McNicholas W. Chazal Pd Real time breathing rate estimation from a non contact biosensor. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 31 Aug 2010–4 Sept 2010. pp. 630–3. doi:10.1109/IEMBS.2010.5627275.

  39. Rahman T, Adams AT, Ravichandran RV, Zhang M, Patel SN, Kientz JA, Choudhury T. (2015) DoppleSleep: a contactless unobtrusive sleep sensing system using short-range Doppler radar. Paper presented at the Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan.

  40. Hosseini SMAT, Amindavar H. A new Ka-band Doppler radar in robust and precise cardiopulmonary remote sensing. IEEE Trans Instrum Meas. 2017. doi:10.1109/TIM.2017.2714480.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Bühler and Ms. Morais, sleep technicians of Sleep-Wake-Epilepsy-Centre, Department of Neurology, lnselspital, Bern University Hospital, for their valuable support in performing overnight PSG recordings.

Funding

This study was funded by departmental funding only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vogt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasireddy, R., Roth, C., Mathis, J. et al. K-band Doppler radar for contact-less overnight sleep marker assessment: a pilot validation study. J Clin Monit Comput 32, 729–740 (2018). https://doi.org/10.1007/s10877-017-0060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-017-0060-9

Keywords

Navigation