Skip to main content
Log in

A head to head evaluation of 8 biochemical scanning tools for unmeasured ions

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

We aimed to evaluate the sensitivity and specificity of 8 biochemical scanning tools in signalling the presence of unmeasured anions. We used blood gas and biochemical data from 15 patients during and after cardio-pulmonary bypass. Sampling time-points were pre-bypass (T1), 2 min post equilibration with priming fluid containing acetate and gluconate anions (T2), late bypass (T3) and 4 h after surgery (T4). We calculated the anion gap (AG), albumin—corrected anion gap (AGc), whole blood base excess (BE) gap, plasma BE gap, standard BE gap and the strong ion gap (SIG), plus 2 new indices—the unmeasured ion index (UIX) and unmeasured plasma anions according to the interstitial, plasma and erythrocyte acid–base model (IPEua). Total measured plasma concentrations of acetate and gluconate [XA] were proxies for unmeasured plasma anions. [XA] values (mmol/L) were 1.41 (0.87) at T1, 11.73 (3.28) at T2, 4.80 (1.49) at T3 and 1.36 (0.73) at T4. Corresponding [albumin] values (g/L) were 32.3 (2.0), 19.8 (2.6), 21.3 (2.5) and 29.1 (2.3) respectively. Only the AG failed to increase significantly at T2 in response to a mean [XA] surge of >10 mEq/L. At an [XA] threshold of 6 mEq/L, areas under receiver –operator characteristic curves in rank order were IPEua and UIX (0.88 and 0.87 respectively), SIG (0.81), AGc (0.79), standard BE gap (0.77), plasma BE gap (0.71), BE gap (0.70) and AG (0.59). Similar ranking hierarchies applied to positive and negative predictive values. We conclude that during acute hemodilution UIX and IPEua are superior to the anion gap (with and without albumin correction) and 4 other indices as scanning tools for unmeasured anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morgan TJ. Unmeasured ions and the strong ion gap. In: Kellum JA, Elbers PWG, editors. Stewart’s textbook of acid base. Amsterdam: AcidBase.org; 2009. p. 323–37.

    Google Scholar 

  2. Emmett M, Narins RG. Clinical use of the anion gap. Medicine (Baltimore). 1977;56(1):38–54.

    Article  CAS  Google Scholar 

  3. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26(11):1807–10.

    Article  CAS  PubMed  Google Scholar 

  4. Jones NL. A quantitative physicochemical approach to acid-base physiology. Clin Biochem. 1990;23(3):189–95.

    Article  CAS  PubMed  Google Scholar 

  5. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: A methodology for exploring unexplained anions. J Crit Care. 1995;10(2):51–5.

    Article  CAS  PubMed  Google Scholar 

  6. Gilfix BM, Bique M, Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care. 1993;8(4):187–97.

    Article  CAS  PubMed  Google Scholar 

  7. Boyle M, Lawrence J. An easy method of mentally estimating the metabolic component of acid/base balance using the Fencl-Stewart approach. Anaesth Intensive Care. 2003;31(5):538–47.

    CAS  PubMed  Google Scholar 

  8. Story DA, Morimatsu H, Bellomo R. Strong ions, weak acids and base excess: A simplified Fencl-Stewart approach to clinical acid-base disorders. Br J Anaesth. 2004;92(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  9. Siggaard-Andersen O. The Van Slyke equation. Scand J Clin Lab Invest Suppl. 1977;37(146):15–20.

    Article  CAS  Google Scholar 

  10. Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl. 1995;107:123–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wolf MB, Deland EC. A comprehensive, computer-model-based approach for diagnosis and treatment of complex acid-base disorders in critically-ill patients. J Clin Monit Comput. 2011;25(6):353–64. doi:10.1007/s10877-011-9320-2.

    Article  PubMed  Google Scholar 

  12. Anstey CM. Estimating the net effect of unmeasured ions in human extracellular fluid using a new mathematical model. Part II: Practical issues. Anaesth Intensive Care. 2010;38(5):870–5.

    CAS  PubMed  Google Scholar 

  13. Morgan TJ. Partitioning standard base excess: A new approach. J Clin Monit Comput. 2011;25(6):349–52. doi:10.1007/s10877-011-9324-y.

    Article  PubMed  Google Scholar 

  14. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27(8):1577–81.

    Article  CAS  PubMed  Google Scholar 

  15. Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, Sinh DX, Taylor A, Hien TT, White NJ, Day NP. Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med. 2004;32(8):1683–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32(5):1120–4.

    Article  CAS  PubMed  Google Scholar 

  17. Durward A, Tibby SM, Skellett S, Austin C, Anderson D, Murdoch IA. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr Crit Care Med. 2005;6(3):281–5. doi:10.1097/01.PCC.0000163979.33774.89.

    Article  PubMed  Google Scholar 

  18. Murray D, Grant D, Murali N, Butt W. Unmeasured anions in children after cardiac surgery. J Thorac Cardiovasc Surg. 2007;133(1):235–40. doi:10.1016/j.jtcvs.2006.09.017.

    Article  PubMed  Google Scholar 

  19. Kaplan LJ, Kellum JA. Comparison of acid-base models for prediction of hospital mortality after trauma. Shock. 2008;29(6):662–6. doi:10.1097/shk.0b013e3181618946.

    CAS  PubMed  Google Scholar 

  20. Davies PG, Venkatesh B, Morgan TJ, Presneill JJ, Kruger PS, Thomas BJ, Roberts MS, Mundy J. Plasma acetate, gluconate and interleukin-6 profiles during and after cardiopulmonary bypass: A comparison of Plasma-Lyte 148 with a bicarbonate-balanced solution. Crit Care. 2011;15(1):R21. doi:10.1186/cc9966.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anstey CM. Estimating the net effect of unmeasured ions in human extracellular fluid using a new mathematical model. Part I: Theoretical considerations. Anaesth Intensive Care. 2010;38(5):862–9.

    CAS  PubMed  Google Scholar 

  22. Wolf MB, Deland EC. A mathematical model of blood-interstitial acid-base balance: Application to dilution acidosis and acid-base status. J Appl Physiol. 2011;110(4):988–1002. doi:10.1152/japplphysiol.00514.2010.

    Article  PubMed  Google Scholar 

  23. Tosteson AN, Weinstein MC, Wittenberg J, Begg CB. ROC curve regression analysis: The use of ordinal regression models for diagnostic test assessment. Environ Health Perspect. 1994;102(Suppl 8):73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Metz CE, Herman BA, Shen JH. Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Stat Med. 1998;17(9):1033–53.

    Article  CAS  PubMed  Google Scholar 

  25. Shultz EK. Multivariate receiver-operating characteristic curve analysis: Prostate cancer screening as an example. Clin Chem. 1995;41(8 Pt 2):1248–55.

    CAS  PubMed  Google Scholar 

  26. The Merck Index. 15 edn. Cambridge: The Royal Society of Chemistry; 2013.

    Google Scholar 

  27. Kerns W 2nd, Tomaszewski C, McMartin K, Ford M, Brent J. Alcohols MSGMfT Formate kinetics in methanol poisoning. J Toxicol Clin Toxicol. 2002;40(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  28. Moreau CL, Kerns W 2nd, Tomaszewski CA, McMartin KE, Rose SR, Ford MD, Brent J. Glycolate kinetics and hemodialysis clearance in ethylene glycol poisoning. META Study Group. J Toxicol Clin Toxicol. 1998;36(7):659–66.

    Article  CAS  PubMed  Google Scholar 

  29. Kitabchi A, Hirsch IB, Emmett M (2015) Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation and diagnosis. UpToDate. Accessed 20 Jan 2016.

  30. Laffel L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412–26.

    Article  CAS  PubMed  Google Scholar 

  31. Anstey CM. An assessment of the population variance of the strong ion gap using Monte Carlo simulation. Anaesth Intensive Care. 2009;37(6):983–91.

    CAS  PubMed  Google Scholar 

  32. Agrafiotis M, Sileli M, Ampatzidou F, Keklikoglou I, Panousis P. The base excess gap is not a valid tool for the quantification of unmeasured ions in cardiac surgical patients: A retrospective observational study. Eur J Anaesthesiol. 2013;30(11):678–84. doi:10.1097/EJA.0b013e32836412db.

    Article  PubMed  Google Scholar 

Download references

Funding

Project supported by Departmental Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Morgan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Appendix: preliminary analysis

Appendix: preliminary analysis

Prior to ROC curve analysis, the data were examined to identify a suitable threshold point indicating the presence of XA. Kernel density plots for [XA] for each time sample were constructed and combined into a single summary plot (Fig. 4). On inspection, a threshold point was identified at 6.0 mEq/L. This point was adopted as that which maximised correct classification in each group.

Fig. 4
figure 4

Kernel density plot of the data from times T1, T2, T3 and T4. On the x-axis, XA represents the combined measured plasma concentrations of acetate and gluconate in mEq/L, while the y-axis represents the probability density function for XA. There is a clear inflection point at approximately 6.0 mEq/L which distinguishes results in times T1 and T4 (XA ≤ 6.0 mEq/L) from time T2 (XA > 6.0 mEq/L). Results from time T3 fell into both distributions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, T.J., Anstey, C.M. & Wolf, M.B. A head to head evaluation of 8 biochemical scanning tools for unmeasured ions. J Clin Monit Comput 31, 449–457 (2017). https://doi.org/10.1007/s10877-016-9861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9861-5

Keywords

Navigation