Skip to main content

Advertisement

Log in

Acid–base chemistry of plasma: consolidation of the traditional and modern approaches from a mathematical and clinical perspective

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Objective

Debate still exists as to whether the Stewart (modern) or traditional model of acid–base chemistry is best in assessing the acid–base status of critically ill patients. Recent studies have compared various parameters from the modern and traditional approaches, assessing the clinical usefulness of parameters such as base excess, anion gap, corrected anion gap, strong ion difference and strong ion gap. To compare the clinical usefulness of these parameters, and hence the different approaches, requires a clear understanding of their meaning; a task only possible through understanding the mathematical basis of the approaches. The objective of this paper is to provide this understanding, limiting the mathematics to a necessary minimum.

Method

The first part of this paper compares the mathematics of these approaches, with the second part illustrating the clinical usefulness of the approaches using a patient example.

Results

This analysis illustrates the almost interchangeable nature of the equations and that the same clinical conclusions can be drawn regardless of the approach adopted.

Conclusions

Although different in their concepts, the traditional and modern approaches based on mathematical models can be seen as complementary giving, in principle, the same information about the acid–base status of plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Weak base form of non-bicarbonate buffers, amount of hydrogen binding sites in mmol l−1

AG:

Anion gap, in mmol l−1

AGcorr :

Corrected AG, in mmol l−1

Atot :

Non-bicarbonate buffer concentratition, both in their acid and base form. Non-bicarbonate buffers are treated as a single monovalent weak acid in accordance with the Stewart’s model. Because of monovalency, units of meq  l−1 and mmol l−1 can be treated interchangingly in most cases. We use mmol  l−1

A pHn :

Charge of plasma buffer base at pH = 7.4; directly proportional to Atot. It depends linearly on the concentration of albumins, globulins and phosphates

β:

Buffer Capacity, amount of univalent strong base needed to increase pH by 1, in mmoll−1. Only plasma buffer capacity is discussed in this article, i.e. β = βpl here

BB:

Buffer base, in mmol l−1

BE:

Base excess in mmol l−1, amount of univalent strong base added to plasma (blood) of pH = 7.4

ΔA I :

Change in charge of non-bicarbonate buffer base due to buffering, at normal albumin (plasma protein and phosphate) concentration

ΔA II :

Change in charge of non-bicarbonate buffer base due to buffering, at any albumin (plasma protein and phosphate) concentration

ΔA pHn :

Change in charge of non-bicarbonate buffer base due to change in albumin (plasma protein and phosphate) concentration at normal pH = 7.4

HA:

Weak acid form of non-bicarbonate buffers, in mmol l−1

KA :

Lumped dissociation constant of non-bicarbonate buffers, in mmol l−1

pCO2 :

Partial pressure of carbon dioxide in arterial blood, in kPa (mmHg)

SID:

Strong ion difference, in mmol l−1

SIDA :

Apparent SID, sum of strong cations minus sum of strong anions, in mmol l−1

SIDE :

Effective SID, sum of bicarbonate and non-bicarbonate buffer bases, in mmol l−1

SIG:

Strong ion gap, SIDA minus SIDE, in mmol l−1

X :

Unmeasured anions, generally equal to SIG, in mmol l−1

References

  1. Siggaard-Andersen O. The acid–base status of the blood. Copenhagen: Munksgaard; 1974:25–51.

  2. Siggaard-Andersen O. The Van Slyke equation. Scand J Clin Lab Invest. 1977;37(S146):15–20.

    Article  CAS  Google Scholar 

  3. Siggaard-Andersen O, Wimberly PD, Fogh-Andersen N, Gøthgen I. Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 equations. Scand J Clin Lab Invest. 1988;48(S189):7–15.

    Article  Google Scholar 

  4. Schwartz WB, Relman AS. A critique of the parameters used in the evaluation of acid-base disorders “whole-blood buffer base” and “standard bicarbonate” compared with blood pH and plasma bicarbonate concentration. N Engl J Med. 1963;268:1382–1388.

    Article  CAS  PubMed  Google Scholar 

  5. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–1461.

    Article  CAS  PubMed  Google Scholar 

  6. Figge J, Mydosh T, Fencl V. Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med. 1992;120:713–719.

    CAS  PubMed  Google Scholar 

  7. Constable PD. A simplified strong ion model for acid-base equilibria: application to horse plasma. J Appl Physiol. 1997;83:297–311.

    CAS  PubMed  Google Scholar 

  8. Watson PD. Modeling the effects of proteins on pH in plasma. J Appl Physiol. 1999;86(4):1421–1427.

    CAS  PubMed  Google Scholar 

  9. Wooten EW. Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol. 1999;86(1):326–334.

    CAS  PubMed  Google Scholar 

  10. Wooten EW. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol. 2003;95:2333–2344.

    Article  PubMed  Google Scholar 

  11. Rees SE, Andreassen S. Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng. 2005;33(3):209–264.

    Article  CAS  PubMed  Google Scholar 

  12. ABL800 Flex Specifications, Radiometer Medical A/S 2004. http://www.radiometer.com/abl800-specifications.

  13. Constable PD. Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg. 2003;96:919–922.

    Article  CAS  PubMed  Google Scholar 

  14. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in the pediatric intensive care unit. Crit Care Med. 1999;28(7):1577–1581.

    Article  Google Scholar 

  15. Kaplan LJ, Kellum JA. Comparison of acid-base models for prediction of hospital mortality after trauma. Shock. 2008;29:662–666.

    CAS  PubMed  Google Scholar 

  16. Funk GC, Doberer D, Sterz F, Richling N, Kneidinger N, Lindner G, Schneeweiss B, Eisenburger P. The strong ion gap and outcome after cardiac arrest in patients treated with therapeutic hypothermia: a retrospective study. Intensive Care Med. 2009;35:232–239.

    Article  PubMed  Google Scholar 

  17. Honore PM, Joannes-Boyau O, Boer W. Strong ion gap and outcome after cardiac arrest: another nail in the coffin of traditional acid-base quantification. Intensive Care Med. 2009;35:189–191.

    Article  PubMed  Google Scholar 

  18. Kellum JA. Acid-base physiology in the post-Copernican era. Curr Opin Crit Care. 1999;5:429–435.

    Article  Google Scholar 

  19. Kellum JA. Clinical review: reunification of acid-base physiology. Crit Care. 2005;9:500–507.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Constable PD. Total weak acid concentration and effective dissociation constrant of nonvolatile buffers in human plasma. J Appl Physiol. 2001;91:1364–1371.

    CAS  PubMed  Google Scholar 

  21. Siggaard-Andersen O, Engel K. A new acid–base nomogram- an improved method for the calculation of the relevant blood acid–base data. Scand J Clin Lab Invest. 1960;12:177–186.

    Article  Google Scholar 

  22. Siggaard-Andersen O. The pH–log PCO2 blood acid–base nomogram revised. Scand J Clin Lab Invest. 1962;14:598–604.

    Article  Google Scholar 

  23. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26:1807–1810.

    Article  CAS  PubMed  Google Scholar 

  24. Staempfli HR, Constable PD. Experimental determination of net protein charge and Atot and Ka of nonvolatile buffers in human plasma. J Appl Physiol. 2003;95:620–630.

    Article  CAS  PubMed  Google Scholar 

  25. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–2251.

    Article  CAS  PubMed  Google Scholar 

  26. Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as a measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand. 1995;39((S107)):123–128.

    Article  Google Scholar 

  27. Emmet M, Narins RG. Clinical use of anion gap. Medicine (Baltimore). 1977;56:38–54.

    Article  Google Scholar 

  28. Yahwak JA, Riker RR, Fraser GL, Subak-Sharpe S. Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity. Pharmacotherapy. 2008;28:984–991.

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg M, Green SB, Moss ML, Marbach CB, Garfinkel D. Computerised instruction and diagnosis of acid–base disorders. J Am Med Assoc. 1973;223:269–275.

    Article  Google Scholar 

  30. Siggaard-Andersen O. An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest. 1974;27:239–245.

    Article  Google Scholar 

  31. Kofranek J, Matousek S, Andrlik M. Border flux balance approach towards modelling acid-base chemistry and blood gases transport. In: Zupanic B, Karba R, Blazic S, editors. In: Proceedings of the 6th EUROSIM congress on modelling and simulation. Ljubljana: University of Ljubljana; 2007. pp. 1–9.

  32. Singer RB, Hastings AB. An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine. 1948;27:223–242.

    Article  CAS  PubMed  Google Scholar 

  33. Rees SE, Klæstrup E, Handy J, Andreassen S, Kristensen SR. Mathematical modelling of the acid-base chemistry and oxygenation of blood: a mass balance, mass action approach including plasma and red blood cells. Eur J Appl Physiol. 2010;108(3):483–494.

    Article  CAS  PubMed  Google Scholar 

  34. Siggaard-Andersen O, Rorth M, Strickland DAP. The buffer value of plasma, erythrocyte fluid and whole blood. In: Workshop on pH and Blood Gases. Washington DC: National Bureau of Standards; 1977:11–19.

  35. Lloyd P. Strong ion calculator–a practical bedside application of modern quantitative acid-base physiology. Crit Care Resusc. 2004;6:285–294.

    CAS  PubMed  Google Scholar 

  36. Moviat M, Terpstra AM, Ruitenbeek W, Kluijtmans LA, Pickkers P, van der Hoeven JG. Contribution of various metabolites to the “unmeasured” anions in critically ill patients with metabolic acidosis. Crit Care Med. 2008;36:752–758.

    Article  CAS  PubMed  Google Scholar 

  37. Figge J, Rossing TH, Fencl VJ. The role of serum proteins in acid–base equilibria. J Lab Clin Med. 1991;117:453–467.

    CAS  PubMed  Google Scholar 

  38. Winter SD, Pearson JR, Gabow PA, Schultz AL, Lepoff RB. The fall of the serum anion gap. Arch Intern Med. 1990;150:311–313.

    Article  CAS  PubMed  Google Scholar 

  39. Van Leeuven AM. Net cation equivalency (base binding power) of the plasma proteins. Acta Med Scand. 1964;S422:1–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Rees PhD.

Additional information

Matousek S, Handy J, Rees SE. Acid–base chemistry of plasma: consolidation of the traditional and modern approaches from a mathematical and clinical perspective.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matousek, S., Handy, J. & Rees, S.E. Acid–base chemistry of plasma: consolidation of the traditional and modern approaches from a mathematical and clinical perspective. J Clin Monit Comput 25, 57–70 (2011). https://doi.org/10.1007/s10877-010-9250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-010-9250-4

Keywords

Navigation