Skip to main content

Advertisement

Log in

Transesophageal Doppler devices: A technical review

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Monitoring of aortic blood flow, conducting large portions of the cardiac output (CO), allows conclusions on the global hemodynamic status of patients. For this purpose, transesophageal Doppler (TED) devices have been developed, which interrogate the descending aorta and calculate aortic blood flow velocity using the Doppler principle. The recorded velocity–time curve can be used to estimate CO as well other advanced hemodynamic parameters such as preload, afterload and myocardial contractility. Clinical studies in perioperative patients have demonstrated a reduced postoperative morbidity and shorter length of hospital stay when TED is used to guide fluid management. However, several assumptions are needed to translate the measured Doppler frequency shift to hemo- dynamic variables and discrepancies between the assumed and the actual condition may introduce a considerable risk for erroneous calculations. A correct interpretation of the displayed parameters requires profound knowledge on the technical basis of this method as well as its technical limitations. Our review focuses on these technical aspects which the clinician should be familiar with to allow proper use of TED monitoring devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karakitsos D, Labropoulos N, De GE, Patrianakos AP, Kouraklis G, Poularas J, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10:R162.

    PubMed  Google Scholar 

  2. Pirotte T. Ultrasound-guided vascular access in adults and children: beyond the internal jugular vein puncture. Acta Anaesthesiol Belg. 2008;59:157–66.

    PubMed  Google Scholar 

  3. Schober P, Krage R, Thöne D, Loer SA, Schwarte LA. Ultrasound-guided ankle block in stone man disease, fibrodysplasia ossificans progressiva. Anesth Analg. 2009;109:988–90.

    PubMed  Google Scholar 

  4. Chin KJ, Chan V. Ultrasound-guided peripheral nerve blockade. Curr Opin Anaesthesiol. 2008;21:624–31.

    PubMed  Google Scholar 

  5. Rasulo FA, De PE, Lavinio A. Transcranial Doppler ultrasonography in intensive care. Eur J Anaesthesiol Suppl. 2008;42:167–73.

    CAS  PubMed  Google Scholar 

  6. Mostbeck GH, Zontsich T, Turetschek K. Ultrasound of the kidney: obstruction and medical diseases. Eur Radiol. 2001;11:1878–89.

    CAS  PubMed  Google Scholar 

  7. Correas JM, Claudon M, Tranquart F, Helenon AO. The kidney: imaging with microbubble contrast agents. Ultrasound Q. 2006;22:53–66.

    PubMed  Google Scholar 

  8. Urban G, Vergani P, Ghidini A, Tortoli P, Ricci S, Patrizio P, et al. State of the art: non-invasive ultrasound assessment of the uteroplacental circulation. Semin Perinatol. 2007;31:232–9.

    PubMed  Google Scholar 

  9. Dietrich CF, Jedrzejczyk M, Ignee A. Sonographic assessment of splanchnic arteries and the bowel wall. Eur J Radiol. 2007;64:202–12.

    CAS  PubMed  Google Scholar 

  10. Chytra I, Pradl R, Bosman R, Pelnar P, Kasal E, Zidkova A. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007;11:R24.

    PubMed  Google Scholar 

  11. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93:1069–76.

    CAS  PubMed  Google Scholar 

  12. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.

    CAS  PubMed  Google Scholar 

  13. McFall MR, Woods WG, Wakeling HG. The use of oesophageal Doppler cardiac output measurement to optimize fluid management during colorectal surgery. Eur J Anaesthesiol. 2004;21:581–3.

    CAS  PubMed  Google Scholar 

  14. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329:258–61.

    Google Scholar 

  15. Conway DH, Mayall R, bdul-Latif MS, Gilligan S, Tackaberry C. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia. 2002;57:845–9.

    CAS  PubMed  Google Scholar 

  16. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    PubMed  Google Scholar 

  17. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002;88:65–71.

    CAS  PubMed  Google Scholar 

  18. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–12.

    CAS  PubMed  Google Scholar 

  19. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130:423–9.

    CAS  PubMed  Google Scholar 

  20. Schober P, Loer SA, Schwarte LA. Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth Analg. 2009;109:340–53.

    PubMed  Google Scholar 

  21. Singer M. Oesophageal Doppler. Curr Opin Crit Care. 2009;15:244–8.

    PubMed  Google Scholar 

  22. Doppler JC. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften. 1842;2:465–82.

    Google Scholar 

  23. Buys Ballot C. Bedrog van het gehoororgaan in het bepalen van de hoogte van een waargenomen toon. Algemeen Muzikaal Tijdschrift van Nederland. 1845;2:167–70.

    Google Scholar 

  24. Buys Ballot C. Akustische Versuche auf der Niederländischen Eisenbahn, nebst gelegentlichen Bemerkungen zur Theorie des Herrn Professor Doppler. Annalen der Physik und Chemie. 1845;11:321–51.

    Google Scholar 

  25. Shung KK, Sigelmann RA, Reid JM. Scattering of ultrasound by blood. IEEE Trans Biomed Eng. 1976;23:460–7.

    CAS  PubMed  Google Scholar 

  26. Taylor KJ, Holland S. Doppler US. Part I. Basic principles, instrumentation, and pitfalls. Radiology. 1990;174:297–307.

    CAS  PubMed  Google Scholar 

  27. Rubens DJ, Bhatt S, Nedelka S, Cullinan J. Doppler artifacts and pitfalls. Radiol Clin North Am. 2006;44:805–35.

    PubMed  Google Scholar 

  28. Nelson TR, Pretorius DH. The Doppler signal: where does it come from and what does it mean? AJR Am J Roentgenol. 1988;151:439–47.

    CAS  PubMed  Google Scholar 

  29. Pellett AA, Kerut EK. The Doppler equation. Echocardiography. 2004;21:197–8.

    PubMed  Google Scholar 

  30. Franklin DL, Sschlegel W, Rushmer RF. Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science. 1961;134:564–5.

    CAS  PubMed  Google Scholar 

  31. Satomura S. Study of the flow patterns in peripheral arteries by ultrasonics. J Acoust Soc Jpn. 1959;15:151–8.

    Google Scholar 

  32. Rushmer RF, Baker DW, Stegall HF. Transcutaneous Doppler flow detection as a nondestructive technique. J Appl Physiol. 1966;21:554–66.

    CAS  PubMed  Google Scholar 

  33. Stegall HF, Rushmer RF, Baker DW. A transcutaneous ultrasonic blood-velocity meter. J Appl Physiol. 1966;21:707–11.

    CAS  PubMed  Google Scholar 

  34. Light LH. Non-injurious ultrasonic technique for observing flow in the human aorta. Nature. 1969;224:1119–21.

    CAS  PubMed  Google Scholar 

  35. Huntsman LL, Gams E, Johnson CC, Fairbanks E. Trancutaneous determination of aortic blood-flow velocities in man. Am Heart J. 1975;89:605–12.

    CAS  PubMed  Google Scholar 

  36. Side CD, Gosling RG. Non-surgical assessment of cardiac function. Nature. 1971;232:335–6.

    CAS  PubMed  Google Scholar 

  37. Histand MB, Wells MK, Reeves JT, Sodal IE, Adamson HP, Willson JT. Ultrasonic pulsed Doppler transoesophageal measurement of aortic haemodynamics in humans. Ultrasonics. 1979;17:215–8.

    CAS  PubMed  Google Scholar 

  38. Lefrant JY, Bruelle P, Aya AG, Saissi G, Dauzat M, de La Coussaye JE, et al. Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med. 1998;24:347–52.

    CAS  PubMed  Google Scholar 

  39. Fourcade C, Cathignol D, Muchada R, Chapelon JY, Bui-Xuan B, Bouletreau P, et al. Validation de la débitmétrie aortique par capteur ultrasonore oesophagien dans la surveillance hémodynamique non sanglante. Agressologie. 1980;21:121–8.

    CAS  PubMed  Google Scholar 

  40. Tomlin PJ, Duck FA. Transoesophageal aortic velography in man. Can Anaesth Soc J. 1975;22:561–71.

    CAS  PubMed  Google Scholar 

  41. Wells MK, Histand MB, Reeves JT, Sodal IE, Adamson HP. Ultrasonic transesophageal measurement of hemodynamic parameters in humans. ISA Trans. 1979;18:57–61.

    CAS  PubMed  Google Scholar 

  42. Daigle RE, Miller CW, Histand MB, McLeod FD, Hokanson DE. Nontraumatic aortic blood flow sensing by use of an ultrasonic esophageal probe. J Appl Physiol. 1975;38:1153–60.

    CAS  PubMed  Google Scholar 

  43. Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17:447–52.

    CAS  PubMed  Google Scholar 

  44. Olson RM, Cooke JP. A nondestructive ultrasonic technique to measure diameter and blood flow in arteries. IEEE Trans Biomed Eng. 1974;21:168–71.

    CAS  PubMed  Google Scholar 

  45. Lavandier B, Cathignol D, Muchada R, Xuan BB, Motin J. Noninvasive aortic blood flow measurement using an intraesophageal probe. Ultrasound Med Biol. 1985;11:451–60.

    CAS  PubMed  Google Scholar 

  46. Singer M. ODM/CardioQ esophageal Doppler technology. Crit Care Med. 2003;31:1888–9.

    PubMed  Google Scholar 

  47. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–70.

    Google Scholar 

  48. Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49:393–401.

    PubMed  Google Scholar 

  49. Gardin JM, Davidson DM, Rohan MK, Butman S, Knoll M, Garcia R, et al. Relationship between age, body size, gender, and blood pressure and Doppler flow measurements in the aorta and pulmonary artery. Am Heart J. 1987;113:101–9.

    CAS  PubMed  Google Scholar 

  50. Mowat DH, Haites NE, Rawles JM. Aortic blood velocity measurement in healthy adults using a simple ultrasound technique. Cardiovasc Res. 1983;17:75–80.

    CAS  PubMed  Google Scholar 

  51. King SL, Lim MS. The use of the oesophageal Doppler monitor in the intensive care unit. Crit Care Resusc. 2004;6:113–22.

    CAS  PubMed  Google Scholar 

  52. Freund PR. Transesophageal Doppler scanning versus thermodilution during general anesthesia. An initial comparison of cardiac output techniques. Am J Surg. 1987;153:490–4.

    CAS  PubMed  Google Scholar 

  53. Moxon D, Pinder M, van Heerden PV, Parsons RW. Clinical evaluation of the HemoSonic monitor in cardiac surgical patients in the ICU. Anaesth Intensive Care. 2003;31:408–11.

    CAS  PubMed  Google Scholar 

  54. Tibby SM, Hatherill M, Murdoch IA. Use of transesophageal Doppler ultrasonography in ventilated pediatric patients: derivation of cardiac output. Crit Care Med. 2000;28:2045–50.

    CAS  PubMed  Google Scholar 

  55. Penny JA, Anthony J, Shennan AH, De SM, Singer M. A comparison of hemodynamic data derived by pulmonary artery flotation catheter and the esophageal Doppler monitor in preeclampsia. Am J Obstet Gynecol. 2000;183:658–61.

    CAS  PubMed  Google Scholar 

  56. Krishnamurthy B, McMurray TJ, McClean E. The peri-operative use of the oesophageal Doppler monitor in patients undergoing coronary artery revascularisation. A comparison with the continuous cardiac output monitor. Anaesthesia. 1997;52:624–9.

    CAS  PubMed  Google Scholar 

  57. Su NY, Huang CJ, Tsai P, Hsu YW, Hung YC, Cheng CR. Cardiac output measurement during cardiac surgery: esophageal Doppler versus pulmonary artery catheter. Acta Anaesthesiol Sin. 2002;40:127–33.

    PubMed  Google Scholar 

  58. Perrino AC, Fleming J, LaMantia KR. Transesophageal Doppler ultrasonography: evidence for improved cardiac output monitoring. Anesth Analg. 1990;71:651–7.

    PubMed  Google Scholar 

  59. Singer M, Bennett ED. Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med. 1991;19:1132–7.

    CAS  PubMed  Google Scholar 

  60. Cariou A, Monchi M, Joly LM, Bellenfant F, Claessens YE, Thebert D, et al. Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med. 1998;26:2066–72.

    CAS  PubMed  Google Scholar 

  61. Singer M, Bennett D. Optimisation of positive end expiratory pressure for maximal delivery of oxygen to tissues using oesophageal Doppler ultrasonography. BMJ. 1989;298:1350–3.

    CAS  PubMed  Google Scholar 

  62. Knirsch W, Kretschmar O, Tomaske M, Stutz K, Nagdyman N, Balmer C, et al. Comparison of cardiac output measurement using the CardioQP oesophageal Doppler with cardiac output measurement using thermodilution technique in children during heart catheterisation. Anaesthesia. 2008;63:851–5.

    CAS  PubMed  Google Scholar 

  63. Lafanechere A, Albaladejo P, Raux M, Geeraerts T, Bocquet R, Wernet A, et al. Cardiac output measurement during infrarenal aortic surgery: echo-esophageal Doppler versus thermodilution catheter. J Cardiothorac Vasc Anesth. 2006;20:26–30.

    PubMed  Google Scholar 

  64. Sharma J, Bhise M, Singh A, Mehta Y, Trehan N. Hemodynamic measurements after cardiac surgery: transesophageal Doppler versus pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2005;19:746–50.

    PubMed  Google Scholar 

  65. Collins S, Girard F, Boudreault D, Chouinard P, Normandin L, Couture P, et al. Esophageal Doppler and thermodilution are not interchangeable for determination of cardiac output. Can J Anaesth. 2005;52:978–85.

    PubMed  Google Scholar 

  66. Bein B, Worthmann F, Tonner PH, Paris A, Steinfath M, Hedderich J, et al. Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anesth. 2004;18:185–9.

    PubMed  Google Scholar 

  67. Decoene C, Modine T, Al-Ruzzeh S, Athanasiou T, Fawzi D, Azzaoui R, et al. Analysis of thoracic aortic blood flow during off-pump coronary artery bypass surgery. Eur J Cardiothorac Surg. 2004;25:26–34.

    PubMed  Google Scholar 

  68. Kim K, Kwok I, Chang H, Han T. Comparison of cardiac outputs of major burn patients undergoing extensive early escharectomy: esophageal Doppler monitor versus thermodilution pulmonary artery catheter. J Trauma. 2004;57:1013–7.

    PubMed  Google Scholar 

  69. Hullett B, Gibbs N, Weightman W, Thackray M, Newman M. A comparison of CardioQ and thermodilution cardiac output during off-pump coronary artery surgery. J Cardiothorac Vasc Anesth. 2003;17:728–32.

    PubMed  Google Scholar 

  70. Jaeggi P, Hofer CK, Klaghofer R, Fodor P, Genoni M, Zollinger A. Measurement of cardiac output after cardiac surgery by a new transesophageal Doppler device. J Cardiothorac Vasc Anesth. 2003;17:217–20.

    PubMed  Google Scholar 

  71. Seoudi HM, Perkal MF, Hanrahan A, Angood PB. The esophageal Doppler monitor in mechanically ventilated surgical patients: does it work? J Trauma. 2003;55:720–5.

    PubMed  Google Scholar 

  72. Roeck M, Jakob SM, Boehlen T, Brander L, Knuesel R, Takala J. Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med. 2003;29:1729–35.

    PubMed  Google Scholar 

  73. Leather HA, Wouters PF. Oesophageal Doppler monitoring overestimates cardiac output during lumbar epidural anaesthesia. Br J Anaesth. 2001;86:794–7.

    CAS  PubMed  Google Scholar 

  74. Odenstedt H, Aneman A, Oi Y, Svensson M, Stenqvist O, Lundin S. Descending aortic blood flow and cardiac output: a clinical and experimental study of continuous oesophageal echo-Doppler flowmetry. Acta Anaesthesiol Scand. 2001;45:180–7.

    CAS  PubMed  Google Scholar 

  75. DiCorte CJ, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;69:1782–6.

    CAS  PubMed  Google Scholar 

  76. Baillard C, Cohen Y, Fosse JP, Karoubi P, Hoang P, Cupa M. Haemodynamic measurements (continuous cardiac output and systemic vascular resistance) in critically ill patients: transoesophageal Doppler versus continuous thermodilution. Anaesth Intensive Care. 1999;27:33–7.

    CAS  PubMed  Google Scholar 

  77. Madan AK, UyBarreta VV, iabadi-Wahle S, Jesperson R, Hartz RS, Flint LM, et al. Esophageal Doppler ultrasound monitor versus pulmonary artery catheter in the hemodynamic management of critically ill surgical patients. J Trauma. 1999;46:607–11.

    CAS  PubMed  Google Scholar 

  78. Bernardin G, Tiger F, Fouche R, Mattei M. Continuous noninvasive measurement of aortic blood flow in critically ill patients with a new esophageal echo-Doppler system. J Crit Care. 1998;13:177–83.

    CAS  PubMed  Google Scholar 

  79. Colbert S, O’Hanlon DM, Duranteau J, Ecoffey C. Cardiac output during liver transplantation. Can J Anaesth. 1998;45:133–8.

    CAS  PubMed  Google Scholar 

  80. Valtier B, Cholley BP, Belot JP, de La Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998;158:77–83.

    CAS  PubMed  Google Scholar 

  81. Keyl C, Rodig G, Lemberger P, Hobbhahn J. A comparison of the use of transoesophageal Doppler and thermodilution techniques for cardiac output determination. Eur J Anaesthesiol. 1996;13:136–42.

    CAS  PubMed  Google Scholar 

  82. Klotz KF, Klingsiek S, Singer M, Wenk H, Eleftheriadis S, Kuppe H, et al. Continuous measurement of cardiac output during aortic cross-clamping by the oesophageal Doppler monitor ODM 1. Br J Anaesth. 1995;74:655–60.

    CAS  PubMed  Google Scholar 

  83. Murdoch IA, Marsh MJ, Tibby SM, McLuckie A. Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr. 1995;84:761–4.

    CAS  PubMed  Google Scholar 

  84. Schmid ER, Spahn DR, Tornic M. Reliability of a new generation transesophageal Doppler device for cardiac output monitoring. Anesth Analg. 1993;77:971–9.

    CAS  PubMed  Google Scholar 

  85. Perrino AC, Fleming J, LaMantia KR. Transesophageal Doppler cardiac output monitoring: performance during aortic reconstructive surgery. Anesth Analg. 1991;73:705–10.

    PubMed  Google Scholar 

  86. Stein MS, Barratt SM, Purcell GJ. Intraoperative assessment of the Lawrence 3000 Doppler cardiac output monitor. Anaesth Intensive Care. 1991;19:251–5.

    CAS  PubMed  Google Scholar 

  87. Spahn DR, Schmid ER, Tornic M, Jenni R, von Segesser L, Turina M, et al. Noninvasive versus invasive assessment of cardiac output after cardiac surgery: clinical validation. J Cardiothorac Anesth. 1990;4:46–59.

    CAS  PubMed  Google Scholar 

  88. Kumar A, Minagoe S, Thangathurai D, Mikhail M, Novia D, Viljoen JF, et al. Noninvasive measurement of cardiac output during surgery using a new continuous-wave Doppler esophageal probe. Am J Cardiol. 1989;64:793–8.

    Google Scholar 

  89. Ueda M, Yokota S, Nakata F, Kaseno S, Sakuraya N, Kemmotsu O. Clinical evaluation of esophageal doppler cardiac output measurement during general anesthesia. J Anesth. 1989;3:178–82.

    CAS  PubMed  Google Scholar 

  90. Siegel LC, Shafer SL, Martinez GM, Ream AK, Scott JC. Simultaneous measurements of cardiac output by thermodilution, esophageal Doppler, and electrical impedance in anesthetized patients. J Cardiothorac Anesth. 1988;2:590–5.

    CAS  PubMed  Google Scholar 

  91. Mark JB, Steinbrook RA, Gugino LD, Maddi R, Hartwell B, Shemin R, et al. Continuous noninvasive monitoring of cardiac output with esophageal Doppler ultrasound during cardiac surgery. Anesth Analg. 1986;65:1013–20.

    CAS  PubMed  Google Scholar 

  92. Iregui MG, Prentice D, Sherman G, Schallom L, Sona C, Kollef MH. Physicians’ estimates of cardiac index and intravascular volume based on clinical assessment versus transesophageal Doppler measurements obtained by critical care nurses. Am J Crit Care. 2003;12:336–42.

    PubMed  Google Scholar 

  93. Gomez CM, Palazzo MG. Pulmonary artery catheterization in anaesthesia and intensive care. Br J Anaesth. 1998;81:945–56.

    CAS  PubMed  Google Scholar 

  94. Robin E, Costecalde M, Lebuffe G, Vallet B. Clinical relevance of data from the pulmonary artery catheter. Crit Care. 2006;10(Suppl 3):S3.

    PubMed  Google Scholar 

  95. Schober P, Meuleman EJ, Boer C, Loer SA, Schwarte LA. Transurethral resection syndrome detected and managed using transesophageal Doppler. Anesth Analg. 2008;107:921–5.

    PubMed  Google Scholar 

  96. Chandran KB. Flow dynamics in the human aorta. J Biomech Eng. 1993;115:611–6.

    CAS  PubMed  Google Scholar 

  97. Bogren HG, Buonocore MH. Complex flow patterns in the great vessels: a review. Int J Card Imaging. 1999;15:105–13.

    CAS  PubMed  Google Scholar 

  98. Klipstein RH, Firmin DN, Underwood SR, Rees RS, Longmore DB. Blood flow patterns in the human aorta studied by magnetic resonance. Br Heart J. 1987;58:316–23.

    CAS  PubMed  Google Scholar 

  99. Munoz HR, Sacco CM. Cardiac mechanical energy and effects on the arterial tree. J Cardiothorac Vasc Anesth. 1997;11:289–98.

    CAS  PubMed  Google Scholar 

  100. Greenfield JC, Patel DJ. Relation between pressure and diameter in the ascending aorta of man. Circ Res. 1962;10:778–81.

    PubMed  Google Scholar 

  101. Lnne T, Stale H, Bengtsson H, Gustafsson D, Bergqvist D, Sonesson B, et al. Noninvasive measurement of diameter changes in the distal abdominal aorta in man. Ultrasound Med Biol. 1992;18:451–7.

    CAS  PubMed  Google Scholar 

  102. Monnet X, Chemla D, Osman D, Anguel N, Richard C, Pinsky MR, et al. Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit Care Med. 2007;35:477–82.

    PubMed  Google Scholar 

  103. Kamal GD, Symreng T, Starr J. Inconsistent esophageal Doppler cardiac output during acute blood loss. Anesthesiology. 1990;72:95–9.

    CAS  PubMed  Google Scholar 

  104. Oyama M, McNamara JJ, Suehiro GT, Suehiro A, Sue-Ako K. The effects of thoracic aortic cross-clamping and declamping on visceral organ blood flow. Ann Surg. 1983;197:459–63.

    CAS  PubMed  Google Scholar 

  105. Schenk WG, Camp FA, Kjartansson KB, Pollock L. Hemorrhage without hypotension: an experimental study of aortic flow redistribution following minor hemorrhage. Ann Surg. 1964;160:7–13.

    Article  PubMed  Google Scholar 

  106. Dumans-Nizard V, Nizard J, Payen D, Cholley BP. Redistribution of cardiac output during hemorrhagic shock in sheep. Crit Care Med. 2006;34:1147–51.

    PubMed  Google Scholar 

Download references

Financial Support Departmental funding only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schober.

Additional information

Schober P, Loer SA, Schwarte LA. Transesophageal Doppler devices: a technical review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schober, P., Loer, S.A. & Schwarte, L.A. Transesophageal Doppler devices: A technical review. J Clin Monit Comput 23, 391–401 (2009). https://doi.org/10.1007/s10877-009-9204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-009-9204-x

Keywords

Navigation