Skip to main content

Advertisement

Log in

Prospective Investigation into the Influence of Various Stressors on Skin Impedance

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Background

The control mechanisms during general anesthesia include circulation parameters and vegetative reactions. A possible way to quantify vegetative reactions is to measure the impedance of the skin. An activation of the eccrine sweat glands via sympathetic sudomotor fibers induces a secretion of sweat, which generates a drop in skin impedance. The aim of the present study was to investigate the influence which different stressors and measurement electrodes have upon skin impedance.

Material and Method

The changes in skin impedance and were measured after application of various stimuli (T1 value at rest, T2 acoustic stimulus, T3 visual stimulus, T4 tactile stimulus, T5 pain stimulus, T6 Valsalva manoeuvre, T7 forced inspiration/expiration). About 62 awake subjects underwent four standardized test sequences, during which several types of electrodes and recording sites (palmarly, plantarly) were explored.

Results

All physiological (T6–T7) and external stimuli (T2–T5) led to significant changes in skin impedance (14.9 ±α8.2 kΩ) and heart rate. These changes happened independently of BMI, gender and measurement electrode types. The time it took to react to the stimuli was significantly shorter for palmar applications than that obtained from plantar sites. The reaction times were as follows: palmarly 1.2 ±α0.5 seconds for solidgel electrodes and 1.15 ±±0.5 seconds for hydrogel electrodes, plantarly 2.3 ±±1.0 seconds for solidgel electrodes and 2.21 ±±1.2 seconds for hydrogel electrodes. The forced inspiration and expiration manoeuvres generated greater variations in skin impedance than did pain stimulus and acoustic stimulus. Measurements that were performed with solidgel electrodes revealed significantly greater average decreases in skin impedance following exposure to a stimulus.

Conclusion(s)

External, but primarily also physiological stressors, generate direct and reproducible variations in skin impedance. Solidgel ECG electrodes should be used for all measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selye H. Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J 1976;115:53–56

    CAS  PubMed  Google Scholar 

  2. Price E, Korr I. Relationship between Sweat gland activity and electrical resistance of the skin. J Physiol 1957; 10:505–510

    Google Scholar 

  3. Bloch V. New aspects of the psychogalvanic or electrodermographic method as a criterion of emotional tensions. Annee Psychol 1952; 52:329–362

    CAS  PubMed  Google Scholar 

  4. Critchley HD, Elliott R, Mathias CJ, Dolan RJ. Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 2000; 20:3033–3040

    CAS  PubMed  Google Scholar 

  5. Bechara A, Tranel D, Damasio H, Damasio AR. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb Cortex 1996; 6:215–225

    Article  CAS  PubMed  Google Scholar 

  6. Buchel C, Morris J, Dolan R, Friston K. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 1998; 20:947–957

    Article  CAS  PubMed  Google Scholar 

  7. Mangina CA, Beuzeron-Mangina JH. Direct electrical stimulation of specific human brain structures and bilateral electrodermal activity. Int J Psychophysiol 1996; 22:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Oscar-Berman M, Gade A. Electrodermal measures of arousal in humans with cortical or subcortical brain damage. In: Kimmel H ed. The orientating reflex in humans. Hillsdale, NJ: Erlbaum; 1979, pp. 665–676

    Google Scholar 

  9. Gjerstad AC, Storm H, Hagen R, Huiku M, Qvigstad E, Raeder J. Comparison of skin conductance with entropy during intubation, titanic stimulation and emergence from general anaesthesia. Acta Anaesthesiol Scand 2007; 51:8–15

    Article  CAS  PubMed  Google Scholar 

  10. Gjerstad AC, Storm H, Hagen R, Huiku M, Qvigstad E, Raeder J. Skin conductance or entropy for detection of non-noxious stimulation during different clinical levels of sedation. Acta Anaesthesiol Scand 2007; 51:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Ledowski T, Bromilow J, Paech MJ, Storm H, Hacking R, Schug SA. Skin conductance monitoring compared with Bispectral Index to assess emergence from total i.v. anaesthesia using propofol and remifentanil. Br J Anaesth 2006; 97:817–821

    Article  CAS  PubMed  Google Scholar 

  12. Sato K, Dobson RL. Regional and individual variations in the function of the human eccrine sweat gland. J Invest Dermatol 1970; 54:443–449

    Article  CAS  PubMed  Google Scholar 

  13. Grimmes S. Psychogalvanic reflex and changes in electrical parameters of dry skin. Med Biol Eng Comput 1982;20:734–740

    Article  Google Scholar 

  14. Grimmes S. Impedance measurement of individual skin surface electrodes. Med Biol Eng Comput 1983; 21:750–755

    Article  Google Scholar 

  15. Janitzki A, Föckeler W. A mobile system for signal adaptive data storage-application in physiological measurements. Measurement 1986; 4:82–86

    Article  Google Scholar 

  16. Schwilden H, Kochs E, Daunderer M, Jeleazcov Ch, Scheller B, Schneider G, Schuttler J, Schwender D, Stockmanns G, Poppel E. Concurrent recording of AEP, SSEP and EEG parameters during anaesthesia: a factor analysis. Br J Anaesth 2005;95:197–206

    Article  CAS  PubMed  Google Scholar 

  17. Rossini PM, Opsomer RJ, Boccasena P. Sudomotor skin responses following nerve and brain stimulation. Electroencephalogr Clin Neurophysiol 1993; 89:442–446

    Article  CAS  PubMed  Google Scholar 

  18. Gutrecht J. A sympathetic skin response. Clin Neurophysiol 1994;11:519–524

    Article  CAS  Google Scholar 

  19. Jörg J, Boucsein W. Die sympathische Hautreaktion (SSR). Klin Neurophysiol 1998; 29:186–197

    Article  Google Scholar 

  20. Dudel J. Informationsvermittlung durch elektrische Erregung. In: Schmidt RF, Thews G, Hrsg. Physiologie des Menschen. Berlin, Heidelberg, New York: Springer-Verlag, 1995; 26: 20–42

  21. Aramaki S, Kira Y, Hirasawa Y. A study of the normal values and habituation phenomenon of sympathetic skin response. Am J Phys Med Rehabil 1997; 76:2–7

    Article  CAS  PubMed  Google Scholar 

  22. Sharma K, Romano J, Ayyar D, Rotta F, Facca A, Sanchez-Ramos J. Sympathetic skin response and heart rate variability in patients with Huntington disease. Arch Neurol 1999; 56 :1248–1252

    Article  CAS  PubMed  Google Scholar 

  23. Rickles WH Jr, Day JL. Electrodermal activity in non-palmar skin sites. Psychophysiology 1968; 4:421–435

    Article  PubMed  Google Scholar 

  24. Veanbles PH, Sayer E. On the measurement of the level of skin potential. Br J Psychol 1954; 54: 251–260

    Google Scholar 

  25. Venables PH, Christie MJ. Electrodermal activity. In Martin I, Veanables PH (eds.) Techniques in psychophysiology. New York: Wiley, 1980

    Google Scholar 

  26. Fowles DC, Christie MJ, Edelberg R, Grings WW, Lykken DT, Venables PH. Committee report. Publication recommendations for electrodermal measurements. Psychophysiology 1981;18:232–239

    Article  CAS  PubMed  Google Scholar 

  27. Lykken DT, Venables PH. Direct measurement of skin conductance: a proposal for standardization. Psychophysiology 1971; 8:656–672

    Article  CAS  PubMed  Google Scholar 

  28. Eichmeier J. Medizinische Elektronik. Berlin, Heidelberg, New York: Springer Verlag; 1983

    Google Scholar 

  29. Sagberg F. Dependence of EDR recovery times and other electrodermal measures on scale of measurement: a methodological clarification. Psychophysiology 1980; 17:506–509

    Article  CAS  PubMed  Google Scholar 

  30. Boucsein W, Hoffmann G. A direct comparison of the skin conductance and skin resistance methods. Psychophysiology 1979;16:66–70

    Article  CAS  PubMed  Google Scholar 

  31. Boucsein W, Baltissen R, Euler M. Dependence of skin conductance reactions and skin resistance reactions upon previous level. Psychophysiology 1984; 21:212–218

    Article  CAS  PubMed  Google Scholar 

  32. Lidberg L, Wallin G. Sympathetic skin nerve discharges in relation to amplitude of skin response. Psychophysiology 1981;18:268–270

    Article  CAS  PubMed  Google Scholar 

  33. Wallin G, Blumberg H, Hynnin P. Intraneural stimulation as a method to study sympathetic function in the human skin. Neurosci Lett 1983; 36:189–194

    Article  CAS  PubMed  Google Scholar 

  34. Janitzki AS, Vedder N. Mehrkanal-Hautwiderstandsmessungen. Biomed Technik 1987; 32:98–107

    Article  CAS  Google Scholar 

  35. Edelberg R. Electrical properties of the skin. In CC Brown (ed). Methods in psychophysiology. Baltimore: Williams & Wilkins; 1967; pp. 1–53

    Google Scholar 

  36. Barry RJ. Comparability of EDA effects obtained with constant-current skin resistance and constant-voltage skin conductance methods. Physiol Psychol 1981; 9:325–328

    Google Scholar 

  37. Fowles DC, Schneider RE. Effects of epidermal hydration on skin conductance responses and levels. Biol Psychol 1974;2:67–77

    Article  CAS  PubMed  Google Scholar 

  38. McAdams ET, Jossinet J, Lackermeier A, Risacher F. Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography. Med Biol Eng Comput 1996; 34:397–408

    Article  CAS  PubMed  Google Scholar 

  39. Fowles DC, Schneider RE. Electrolyte medium effects on measurements of palmar skin potential. Psychophysiology 1978; 15:474–482

    Article  CAS  PubMed  Google Scholar 

  40. Eisdorfer C, Doerr HO, Follette W. Electrodermal reactivity: an analysis by age and sex. J Human Stress 1980; 6:39–42

    CAS  PubMed  Google Scholar 

  41. Krishnamurthy N, Ahamed SM, Vengadesh GS, Balakumar B, Srinivasan V. Influence of respiration on human sympathetic skin response. Indian J Physiol Pharmacol 1996; 40:350–354

    CAS  PubMed  Google Scholar 

  42. Macefield VG, Wallin BG. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurones to human skin. J Physiol 1999; 516:303–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winterhalter MD.

Additional information

Winterhalter M, Schiller J, Münte S, Bund M, Hoy L, Weilbach C, Piepenbrock S, Rahe-Meyer N. Prospective investigation into the influence of various stressors on skin impedance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winterhalter, M., Schiller, J., Münte, S. et al. Prospective Investigation into the Influence of Various Stressors on Skin Impedance. J Clin Monit Comput 22, 67–74 (2008). https://doi.org/10.1007/s10877-007-9107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-007-9107-7

Keywords

Navigation